Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis

被引:406
作者
Liu, Yilin [1 ]
Zhan, Li [1 ]
Qin, Zhenpeng [2 ,3 ,4 ]
Sackrison, James [5 ]
Bischof, John C. [1 ,6 ,7 ]
机构
[1] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
[2] Univ Texas Dallas, Dept Bioengn, Dept Mech Engn, Richardson, TX 75080 USA
[3] Univ Texas Dallas, Ctr Adv Pain Studies, Richardson, TX 75080 USA
[4] Univ Texas Southwestern Med Ctr Dallas, Dept Surg, Dallas, TX 75390 USA
[5] 3984 Hunters Hill Way, Minnetonka, MN 55345 USA
[6] Univ Minnesota, Dept Biomed Engn, Minneapolis, MN 55455 USA
[7] Univ Minnesota, Inst Engn Med, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
ACID AMPLIFICATION TECHNOLOGIES; ISOTHERMAL AMPLIFICATION; ANTIBODY PAIRS; TEST STRIP; IMMUNOCHROMATOGRAPHIC ASSAY; SIGNAL AMPLIFICATION; SEQUENCE MISMATCHES; GOLD NANOPARTICLES; PROTEIN-DETECTION; VISUAL DETECTION;
D O I
10.1021/acsnano.0c10035
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lateral flow assays (LFAs) are paper-based point-of-care (POC) diagnostic tools that are widely used because of their low cost, ease of use, and rapid format. Unfortunately, traditional commercial LFAs have significantly poorer sensitivities (mu M) and specificities than standard laboratory tests (enzyme-linked immunosorbent assay, ELISA: pM-fM; polymerase chain reaction, PCR: aM), thus limiting their impact in disease control. In this Perspective, we review the evolving efforts to increase the sensitivity and specificity of LFAs. Recent work to improve the sensitivity through assay improvement includes optimization of the assay kinetics and signal amplification by either reader systems or additional reagents. Together, these efforts have produced LFAs with ELISA-level sensitivities (pM-fM). In addition, sample preamplification can be applied to both nucleic acids (direct amplification) and other analytes (indirect amplification) prior to LFA testing, which can lead to PCR-level (aM) sensitivity. However, these amplification strategies also increase the detection time and assay complexity, which inhibits the large-scale POC use of LFAs. Perspectives to achieve future rapid (<30 min), ultrasensitive (PCR-level), and "sample-to-answer" POC diagnostics are also provided. In the case of LFA specificity, recent research efforts have focused on high-affinity molecules and assay optimization to reduce nonspecific binding. Furthermore, novel highly specific molecules, such as CRISPR/Cas systems, can be integrated into diagnosis with LFAs to produce not only ultrasensitive but also highly specific POC diagnostics. In summary, with continuing improvements, LFAs may soon offer performance at the POC that is competitive with laboratory techniques while retaining a rapid format.
引用
收藏
页码:3593 / 3611
页数:19
相关论文
共 207 条
[31]   Development of Point-of-Care Biosensors for COVID-19 [J].
Choi, Jane Ru .
FRONTIERS IN CHEMISTRY, 2020, 8
[32]  
Cobb K., 2008, US PATENT DIAGNOSTIC
[33]   Single Molecule Protein Detection with Attomolar Sensitivity Using Droplet Digital Enzyme-Linked Immunosorbent Assay [J].
Cohen, Limor ;
Cui, Naiwen ;
Cai, Yamei ;
Garden, Padric M. ;
Li, Xiang ;
Weitz, David A. ;
Walt, David R. .
ACS NANO, 2020, 14 (08) :9491-9501
[34]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[35]   Up-converting phosphor technology-based lateral flow assay for detection of Schistosoma circulating anodic antigen in serum [J].
Corstjens, Paul L. A. M. ;
van Lieshout, Lisette ;
Zuiderwijk, Michel ;
Kornelis, Dieuwke ;
Tanke, Hans J. ;
Deelder, Andre M. ;
van Dam, Govert J. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2008, 46 (01) :171-176
[36]   Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay [J].
Corstjens, PLAM ;
Zuiderwijk, M ;
Nilsson, M ;
Feindt, H ;
Niedbala, RS ;
Tanke, HJ .
ANALYTICAL BIOCHEMISTRY, 2003, 312 (02) :191-200
[37]   Multiplexed Recombinase Polymerase Amplification Assay To Detect Intestinal Protozoa [J].
Crannell, Zachary ;
Castellanos-Gonzalez, Alejandro ;
Nair, Gayatri ;
Mejia, Rojelio ;
White, A. Clinton ;
Richards-Kortum, Rebecca .
ANALYTICAL CHEMISTRY, 2016, 88 (03) :1610-1616
[38]  
Craw P, 2012, LAB CHIP, V12, P2469, DOI [10.1039/c2lc40100b, 10.1039/c21c40100b]
[39]   Rapid assays for the diagnosis of influenza A and B viruses in patients evaluated at a large tertiary care children's hospital during two consecutive winter seasons [J].
Cruz, Andrea T. ;
Cazacu, Andreea C. ;
Greer, Jewel M. ;
Dernmler, Gail J. .
JOURNAL OF CLINICAL VIROLOGY, 2008, 41 (02) :143-147
[40]   Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology [J].
Daher, Rana K. ;
Stewart, Gale ;
Boissinot, Maurice ;
Boudreau, Dominique K. ;
Bergeron, Michel G. .
MOLECULAR AND CELLULAR PROBES, 2015, 29 (02) :116-121