Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure

被引:100
作者
Fang, Bo [1 ]
Li, Boya [2 ]
Peng, Yandong [3 ]
Li, Chenxia [2 ]
Hong, Zhi [4 ]
Jing, Xufeng [2 ,4 ]
机构
[1] China Jiliang Univ, Coll Metrol & Measurement Engn, Hangzhou, Zhejiang, Peoples R China
[2] China Jiliang Univ, Inst Optoelect Technol, Hangzhou 310018, Zhejiang, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Elect Informat Engn, Qingdao, Shandong, Peoples R China
[4] China Jiliang Univ, Ctr THz Res, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
absorber; infrared; metamaterial; REFRACTIVE-INDEX METAMATERIALS; TERAHERTZ; DESIGN; ENHANCEMENT; PARAMETERS; ACCURACY;
D O I
10.1002/mop.31890
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a multiband metamaterial absorber consisting of silicon brick array on metal substrate in infrared range. Using the regular hexagon array of silicon bricks, the absorption rate can reach to 90% over the bandwidth of 100 nm, and four absorption peaks with the absorption rate of more than 98% can be obtained. The absorber is independent on polarization angle. The multiband absorption performance can be attributed to primary cavity mode and Mie resonance in silicon bricks. Importantly, when the all-dielectric silicon bricks are replaced by metal-dielectric-metal sandwich structure, the absorption rate above 75% with the bandwidth of more than 200 nm in the absorber can be realized, and it is polarization-insensitive. The absorption peaks are increased to obtain broadband absorption. Our designed sandwich microstructure can generate the resonance effect of magnetic dipole among coupled layers, leading to the characteristics of broadband absorption.
引用
收藏
页码:2385 / 2391
页数:7
相关论文
共 42 条
[1]   Fabrication of electrically contacted plasmonic Schottky nanoantennas on silicon [J].
Alavirad, Mohammad ;
Olivieri, Anthony ;
Roy, Langis ;
Berini, Pierre .
CHINESE OPTICS LETTERS, 2018, 16 (05)
[2]   Achieving transparency with plasmonic and metamaterial coatings -: art. no. 016623 [J].
Alù, A ;
Engheta, N .
PHYSICAL REVIEW E, 2005, 72 (01)
[3]   Flexible control of transmitting terahertz beams based on multilayer encoding metasurfaces [J].
Bie, Xun ;
Jing, Xufeng ;
Hong, Zhi ;
Li, Chenxia .
APPLIED OPTICS, 2018, 57 (30) :9070-9077
[4]   Optical cloaking with metamaterials [J].
Cai, Wenshan ;
Chettiar, Uday K. ;
Kildishev, Alexander V. ;
Shalaev, Vladimir M. .
NATURE PHOTONICS, 2007, 1 (04) :224-227
[5]   Parity-time-symmetric whispering-gallery mode nanoparticle sensor [Invited] [J].
Chen, Weijian ;
Zhang, Jing ;
Peng, Bo ;
Ozdemir, Sahin Kaya ;
Fan, Xudong ;
Yang, Lan .
PHOTONICS RESEARCH, 2018, 6 (05) :A23-A30
[6]   Experimental Verification of Plasmonic Cloaking at Microwave Frequencies with Metamaterials [J].
Edwards, Brian ;
Alu, Andrea ;
Silveirinha, Mario G. ;
Engheta, Nader .
PHYSICAL REVIEW LETTERS, 2009, 103 (15)
[7]  
Fang B, 2018, J OPTOELECTRON ADV M, V20, P371
[8]   Ultrabroadband Perfect Reflectors by All-Dielectric Single-Layer Super Cell Metamaterial [J].
Gui, Xincui ;
Jing, Xufeng ;
Hong, Zhi .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (10) :923-926
[9]   Sequential trapping of single nanoparticles using a gold plasmonic nanohole array [J].
Han, Xue ;
Truong, Viet Giang ;
Thomas, Prince Sunil ;
Chormaic, Sile Nic .
PHOTONICS RESEARCH, 2018, 6 (10) :981-986
[10]   High performance optical absorber based on a plasmonic metamaterial [J].
Hao, Jiaming ;
Wang, Jing ;
Liu, Xianliang ;
Padilla, Willie J. ;
Zhou, Lei ;
Qiu, Min .
APPLIED PHYSICS LETTERS, 2010, 96 (25)