Bounds on graph eigenvalues I

被引:25
|
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
spectral radius; domination number; girth; Laplacian;
D O I
10.1016/j.laa.2006.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n >= 2, maximum degree d, and girth at least 5, then mu(G) <= min {Delta, root n-1}, where mu(G) is the largest eigenvalue of the adjacency matrix of G. Also, if G is a graph of order n >= 2 with dominating number gamma(G) = gamma, then lambda 2(G) <= {(n if gamma =1,)(n - gamma if gamma >= 2,) lambda(n)(G) >= [n/gamma], where 0 = lambda(1) (G) <= lambda(2)(G) <= ... <= lambda(n) (G) are the eigenvalues of the Laplacian of G. We also determine all cases of equality in the above inequalities. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:667 / 671
页数:5
相关论文
共 50 条