Bounds on graph eigenvalues I

被引:25
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
spectral radius; domination number; girth; Laplacian;
D O I
10.1016/j.laa.2006.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n >= 2, maximum degree d, and girth at least 5, then mu(G) <= min {Delta, root n-1}, where mu(G) is the largest eigenvalue of the adjacency matrix of G. Also, if G is a graph of order n >= 2 with dominating number gamma(G) = gamma, then lambda 2(G) <= {(n if gamma =1,)(n - gamma if gamma >= 2,) lambda(n)(G) >= [n/gamma], where 0 = lambda(1) (G) <= lambda(2)(G) <= ... <= lambda(n) (G) are the eigenvalues of the Laplacian of G. We also determine all cases of equality in the above inequalities. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:667 / 671
页数:5
相关论文
共 19 条
[11]   Bounds of Laplacian spectrum of graphs based on the domination number [J].
Lu, M ;
Liu, HQ ;
Tian, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 402 :390-396
[12]   LAPLACE EIGENVALUES OF GRAPHS - A SURVEY [J].
MOHAR, B .
DISCRETE MATHEMATICS, 1992, 109 (1-3) :171-183
[13]   Some inequalities for the largest eigenvalue of a graph [J].
Nikiforov, V .
COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (02) :179-189
[14]   Sharp upper bounds for the Laplacian graph eigenvalues [J].
Pan, YL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 355 :287-295
[15]   Sharp upper bounds on the spectral radius of graphs [J].
Shu, JL ;
Wu, YR .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 377 :241-248
[16]   A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph [J].
Shu, JL ;
Hong, Y ;
Wen-Ren, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 347 (1-3) :123-129
[17]   On the spectral radius of graphs [J].
Yu, AM ;
Lu, M ;
Tian, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 :41-49
[18]   Two sharp upper bounds for the Laplacian eigenvalues [J].
Zhang, XD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 376 :207-213
[19]   Remarks on spectral radius and Laplacian eigenvalues of a graph [J].
Zhou, B ;
Cho, HH .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (03) :781-790