Bounds on graph eigenvalues I

被引:25
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
spectral radius; domination number; girth; Laplacian;
D O I
10.1016/j.laa.2006.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n >= 2, maximum degree d, and girth at least 5, then mu(G) <= min {Delta, root n-1}, where mu(G) is the largest eigenvalue of the adjacency matrix of G. Also, if G is a graph of order n >= 2 with dominating number gamma(G) = gamma, then lambda 2(G) <= {(n if gamma =1,)(n - gamma if gamma >= 2,) lambda(n)(G) >= [n/gamma], where 0 = lambda(1) (G) <= lambda(2)(G) <= ... <= lambda(n) (G) are the eigenvalues of the Laplacian of G. We also determine all cases of equality in the above inequalities. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:667 / 671
页数:5
相关论文
共 19 条
[1]  
BOLLOBAS B, 1998, GRADUATE TEXT MATH, V184
[2]  
Cao DS, 1998, LINEAR ALGEBRA APPL, V270, P1
[3]  
Cvetkovic D. M., 1980, Spectra of Graphs-Theory and Application
[4]   Some new bounds on the spectral radius of graphs [J].
Das, KC ;
Kumar, P .
DISCRETE MATHEMATICS, 2004, 281 (1-3) :149-161
[5]   SOME EIGENVALUE PROPERTIES IN GRAPHS (CONJECTURES OF GRAFFITI .2.) [J].
FAVARON, O ;
MAHEO, M ;
SACLE, JF .
DISCRETE MATHEMATICS, 1993, 111 (1-3) :197-220
[6]   THE LAPLACIAN SPECTRUM OF A GRAPH .2. [J].
GRONE, R ;
MERRIS, R .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) :221-229
[7]   ON MOORE GRAPHS WITH DIAMETER-2 AND DIAMETER-3 [J].
HOFFMAN, AJ ;
SINGLETON, RR .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1960, 4 (05) :497-504
[8]   BOUNDS OF EIGENVALUES OF GRAPHS [J].
HONG, Y .
DISCRETE MATHEMATICS, 1993, 123 (1-3) :65-74
[9]   A sharp upper bound of the spectral radius of graphs [J].
Hong, Y ;
Shu, JL ;
Fang, KF .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 81 (02) :177-183
[10]   A new upper bound for the spectral radius of graphs with girth at least 5 [J].
Lu, M ;
Liu, HQ ;
Tian, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (2-3) :512-516