Bounds on graph eigenvalues I

被引:25
|
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
spectral radius; domination number; girth; Laplacian;
D O I
10.1016/j.laa.2006.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n >= 2, maximum degree d, and girth at least 5, then mu(G) <= min {Delta, root n-1}, where mu(G) is the largest eigenvalue of the adjacency matrix of G. Also, if G is a graph of order n >= 2 with dominating number gamma(G) = gamma, then lambda 2(G) <= {(n if gamma =1,)(n - gamma if gamma >= 2,) lambda(n)(G) >= [n/gamma], where 0 = lambda(1) (G) <= lambda(2)(G) <= ... <= lambda(n) (G) are the eigenvalues of the Laplacian of G. We also determine all cases of equality in the above inequalities. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:667 / 671
页数:5
相关论文
共 50 条
  • [1] BOUNDS FOR EIGENVALUES OF A GRAPH
    Kumar, Ravinder
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2010, 4 (03): : 399 - 404
  • [2] Bounds on graph eigenvalues II
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 427 (2-3) : 183 - 189
  • [3] Bounds for eigenvalues of the adjacency matrix of a graph
    Bhunia, Pintu
    Bag, Santanu
    Paul, Kallol
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (04) : 415 - 432
  • [4] Bounds for the Generalized Distance Eigenvalues of a Graph
    Alhevaz, Abdollah
    Baghipur, Maryam
    Ganie, Hilal Ahmad
    Shang, Yilun
    SYMMETRY-BASEL, 2019, 11 (12):
  • [5] On upper bounds for Laplacian graph eigenvalues
    Zhu, Dongmei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2764 - 2772
  • [6] Bounds for the extreme eigenvalues of the laplacian and signless laplacian of a graph
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2012, 182 (6) : 803 - 813
  • [7] Bounds for the largest and the smallest Aα eigenvalues of a graph in terms of vertex degrees
    Wang, Sai
    Wong, Dein
    Tian, Fenglei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 590 : 210 - 223
  • [8] Bounds for Aα-eigenvalues
    da Silva Jr, Joao Domingos Gomes
    Oliveira, Carla Silva
    da Costa, Liliana Manuela G. C.
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (05) : 2783 - 2798
  • [9] Bounds for the Steklov eigenvalues
    Sheela Verma
    Archiv der Mathematik, 2018, 111 : 657 - 668
  • [10] Bounds for the Steklov eigenvalues
    Verma, Sheela
    ARCHIV DER MATHEMATIK, 2018, 111 (06) : 657 - 668