Fractional Brownian motion as a weak limit of Poisson shot noise processes -: with applications to finance

被引:45
作者
Klüuppelberg, C
Kühn, C
机构
[1] Goethe Univ Frankfurt, Frankfurt Math Finance Inst, D-60054 Frankfurt, Germany
[2] Tech Univ Munich, Ctr Math Sci, D-85747 Garching, Germany
关键词
shot noise process; alternative stock price models; functional limit theorems; fractional Brownian motion; arbitrage; non-explosiveness of point processes;
D O I
10.1016/j.spa.2004.03.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Poisson shot noise processes that are appropriate to model stock prices and provide an economic reason for long-range dependence in asset returns. Under a regular variation condition we show that our model converges weakly to a fractional Brownian motion. Whereas fractional Brownian motion allows for arbitrage, the shot noise process itself can be chosen arbitrage-free. Using the marked point process skeleton of the shot noise process we construct a corresponding equivalent martingale measure explicitly. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:333 / 351
页数:19
相关论文
共 50 条
[21]   CENTRAL LIMIT THEOREM FOR AN ADDITIVE FUNCTIONAL OF THE FRACTIONAL BROWNIAN MOTION [J].
Hu, Yaozhong ;
Nualart, David ;
Xu, Fangjun .
ANNALS OF PROBABILITY, 2014, 42 (01) :168-203
[22]   On Gaussian Processes Equivalent in Law to Fractional Brownian Motion [J].
T. Sottinen .
Journal of Theoretical Probability, 2004, 17 :309-325
[23]   Hurst exponents, Markov processes, and fractional Brownian motion [J].
McCauley, Joseph L. ;
Gunaratne, Gemunu H. ;
Bassler, Kevin E. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (01) :1-9
[24]   Prediction for some processes related to a fractional Brownian motion [J].
Duncan, TE .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (02) :128-134
[25]   Prediction of fractional Brownian motion-type processes [J].
Inoue, A. ;
Anh, V. V. .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (03) :641-666
[26]   Maxima of stochastic processes driven by fractional Brownian motion [J].
Buchmann, B ;
Klüppelberg, C .
ADVANCES IN APPLIED PROBABILITY, 2005, 37 (03) :743-764
[27]   CONDITIONAL DISTRIBUTIONS OF PROCESSES RELATED TO FRACTIONAL BROWNIAN MOTION [J].
Fink, Holger ;
Klueppelberg, Claudia ;
Zaehle, Martina .
JOURNAL OF APPLIED PROBABILITY, 2013, 50 (01) :166-183
[28]   On the supremum of γ-reflected processes with fractional Brownian motion as input [J].
Hashorva, Enkelejd ;
Ji, Lanpeng ;
Piterbarg, Vladimir I. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) :4111-4127
[29]   On Gaussian processes equivalent in law to fractional Brownian motion [J].
Sottinen, T .
JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (02) :309-325
[30]   Some properties of fractional Bessel Processes driven by fractional Brownian Motion [J].
Sun, Yu ;
Gao, Changchun .
NEW ADVANCES IN SIMULATION, MODELLING AND OPTIMIZATION (SMO '07), 2007, :1-+