Deep learning-enabled prediction of 2D material breakdown

被引:6
作者
Huan, Yan Qi [1 ]
Liu, Yincheng [1 ]
Goh, Kuan Eng Johnson [1 ,2 ]
Wong, Swee Liang [1 ,2 ]
Lau, Chit Siong [1 ]
机构
[1] Agcy Sci Technol & Res, Inst Mat Res & Engn, 2 Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
[2] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117551, Singapore
关键词
machine learning; convolutional neural network; long short-term memory; electric breakdown; transition metal dichalcogenides; molybdenum disulfide; field-effect transistor; FIELD-EFFECT TRANSISTORS; MONOLAYER MOS2; ELECTRICAL BREAKDOWN; INTEGRATED-CIRCUITS; GRAPHENE;
D O I
10.1088/1361-6528/abd655
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Characterizing electrical breakdown limits of materials is a crucial step in device development. However, methods for repeatable measurements are scarce in two-dimensional materials, where breakdown studies have been limited to destructive methods. This restricts our ability to fully account for variability in local electronic properties induced by surface contaminants and the fabrication process. To tackle this, we implement a two-step deep-learning model to predict the breakdown mechanism and breakdown voltage of monolayer MoS2 devices with varying channel lengths and resistances using current measured in the low-voltage regime as inputs. A deep neural network (DNN) first classifies between Joule and avalanche breakdown mechanisms using partial current traces from 0 to 20 V. Following this, a convolutional long short-term memory network (CLSTM) predicts breakdown voltages of these classified devices based on partial current traces. We test our model with electrical measurements collected using feedback-control of the applied voltage to prevent device destruction, and show that the DNN classifier achieves an accuracy of 79% while the CLSTM model has a 12% error when requiring only 80% of the current trace as inputs. Our results indicate that information encoded in the current behavior far from the breakdown point can be used for breakdown predictions, which will enable non-destructive and rapid material characterization for 2D material device development.
引用
收藏
页数:10
相关论文
共 51 条
[1]   Graphene at High Bias: Cracking, Layer by Layer Sublimation, and Fusing [J].
Barreiro, A. ;
Boerrnert, F. ;
Ruemmeli, M. H. ;
Buechner, B. ;
Vandersypen, L. M. K. .
NANO LETTERS, 2012, 12 (04) :1873-1878
[2]   Quantum Dots at Room Temperature Carved out from Few-Layer Graphene [J].
Barreiro, Amelia ;
van der Zant, Herre S. J. ;
Vandersypen, Lieven M. K. .
NANO LETTERS, 2012, 12 (12) :6096-6100
[3]   Machine Learning in Nanoscience: Big Data at Small Scales [J].
Brown, Keith A. ;
Brittman, Sarah ;
Maccaferri, Nicolo ;
Jariwala, Deep ;
Ceano, Umberto .
NANO LETTERS, 2020, 20 (01) :2-10
[4]   A reference-free clustering method for the analysis of molecular break-junction measurements [J].
Cabosart, Damien ;
El Abbassi, Maria ;
Stefani, Davide ;
Frisenda, Riccardo ;
Calame, Michel ;
van der Zant, Herre S. J. ;
Perrin, Mickael L. .
APPLIED PHYSICS LETTERS, 2019, 114 (14)
[5]   Powernet: SOI Lateral Power Device Breakdown Prediction With Deep Neural Networks [J].
Chen, Jing ;
Alawieh, Mohamed Baker ;
Lin, Yibo ;
Zhang, Maolin ;
Zhang, Jun ;
Guo, Yufeng ;
Pan, David Z. .
IEEE ACCESS, 2020, 8 (08) :25372-25382
[6]   Thermal Degradation of Monolayer MoS2 on SrTiO3 Supports [J].
Chen, Peiyu ;
Xu, Wenshuo ;
Gao, Yakun ;
Holdway, Philip ;
Warner, Jamie H. ;
Castell, Martin R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (06) :3876-3885
[7]  
Chhowalla M, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats2016.52, 10.1038/natrevmats.2016.52]
[8]   Recent development of two-dimensional transition metal dichalcogenides and their applications [J].
Choi, Wonbong ;
Choudhary, Nitin ;
Han, Gang Hee ;
Park, Juhong ;
Akinwande, Deji ;
Lee, Young Hee .
MATERIALS TODAY, 2017, 20 (03) :116-130
[9]   Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope [J].
Choi, Woosuk ;
Shehzad, Muhammad Arslan ;
Park, Sanghoon ;
Seo, Yongho .
RSC ADVANCES, 2017, 7 (12) :6943-6949
[10]   Electrical Breakdown of Suspended Mono- and Few-Layer Tungsten Disulfide via Sulfur Depletion Identified by in Situ Atomic Imaging [J].
Fan, Ye ;
Robertson, Alex W. ;
Zhou, Yinqiu ;
Chen, Qu ;
Zhang, Xiaowei ;
Browning, Nigel D. ;
Zheng, Haimei ;
Rummeli, Mark H. ;
Warner, Jamie H. .
ACS NANO, 2017, 11 (09) :9435-9444