Complex Dynamical Behaviors in a 3D Simple Chaotic Flow with 3D Stable or 3D Unstable Manifolds of a Single Equilibrium

被引:39
作者
Wei, Zhouchao [1 ]
Li, Yingying [1 ]
Sang, Bo [2 ]
Liu, Yongjian [3 ]
Zhang, Wei [4 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
[2] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Shandong, Peoples R China
[3] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Guangxi, Peoples R China
[4] Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2019年 / 29卷 / 07期
基金
中国国家自然科学基金;
关键词
Hidden chaos; stable equilibrium; degenerate Hopf bifurcation; zero-Hopf bifurcation; multistability; ATTRACTORS; SYSTEM; CHAMELEON; BIFURCATIONS; LATTICE; LINE;
D O I
10.1142/S0218127419500950
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper shows some examples of chaotic systems for the six types of only one hyperbolic equilibrium in changed chameleon-like chaotic system. Two of the six cases have hidden attractors. By adjusting the parameters in the system and controlling the stability of only one equilibrium, we can further obtain chaos with four kinds of conditions: (1) index-0 node; (2) index-3 node; (3) index-0 node foci; (4) index-3 node foci. Based on the method of focus quantities, we study three limit cycles (the outmost and inner cycles are stable, and the intermediate cycle is unstable) bifurcating from an isolated Hopf equilibrium. In addition, one periodic solution can be obtained from a nonisolated zero-Hopf equilibrium. The system may help us in better understanding, revealing an intrinsic relationship of the global dynamical behaviors with the stability of equilibrium point, especially hidden chaotic attractors.
引用
收藏
页数:14
相关论文
共 52 条
[1]  
[Anonymous], ICINCO 2011
[2]   Multistability in Chua's circuit with two stable node-foci [J].
Bao, B. C. ;
Li, Q. D. ;
Wang, N. ;
Xu, Q. .
CHAOS, 2016, 26 (04)
[3]  
Candido M. R., 2018, INT J BIFURCAT CHAOS, V28
[4]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[5]   Finding hidden attractors in improved memristor-based Chua's circuit [J].
Chen, Mo ;
Yu, Jingjing ;
Bao, Bo-Cheng .
ELECTRONICS LETTERS, 2015, 51 (06) :462-463
[6]  
Dias F.S., 2010, ELECT J DIFFERENTIAL, V161, P1
[7]   Hidden attractors in dynamical systems [J].
Dudkowski, Dawid ;
Jafari, Sajad ;
Kapitaniak, Tomasz ;
Kuznetsov, Nikolay V. ;
Leonov, Gennady A. ;
Prasad, Awadhesh .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 637 :1-50
[8]  
Han M., 2012, Normal Forms, Melnikov Functions, and Bifurcations of Limit Cycles
[9]  
Hassard B., 1981, Theory and Application of Hopf Bifurcation
[10]   Chameleon: the most hidden chaotic flow [J].
Jafari, Mohammad Ali ;
Mliki, Ezzedine ;
Akgul, Akif ;
Viet-Thanh Pham ;
Kingni, Sifeu Takougang ;
Wang, Xiong ;
Jafari, Sajad .
NONLINEAR DYNAMICS, 2017, 88 (03) :2303-2317