Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density

被引:187
作者
Bahafid, Sara [1 ,3 ]
Ghabezloo, Siavash [1 ]
Duc, Myriam [2 ]
Faure, Pamela [1 ]
Sulem, Jean [1 ]
机构
[1] Ecole Ponts ParisTech, CNRS, IFSTTAR, Lab Navier,UMR 8205, Champs Sur Marne, France
[2] Univ Paris Est, Ifsttar, GERS SRO, Champs Sur Marne, France
[3] Ecole Ponts ParisTech, Lab Navier CERMES, 6-8 Av Blaise Pascal, F-77455 Champs Sur Marne, Marne La Vallee, France
关键词
hardened cement paste; microstructure; C-S-H; porosity; C-S-H density; CALCIUM-SILICATE-HYDRATE; TRICALCIUM SILICATE; PORTLAND-CEMENT; POROELASTIC PROPERTIES; CURING TEMPERATURE; PORE STRUCTURE; PASTES; PHASE; MODEL; CARBONATION;
D O I
10.1016/j.cemconres.2017.02.008
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Curing temperature has a significant influence on cement paste microstructure and the properties of its principal hydrate C-S-H. In this paper, the effect of the hydration temperature in the range of 7 degrees C to 90 degrees C on the microstructure of a class G oil-well cement is studied. This is done by combining various experimental methods, including X-ray diffraction associated with the Rietveld analysis, thermo-gravimetric analysis, mercury intrusion porosimetry and porosity evaluation by drying. The experimental results show an increase of the capillary porosity and a decrease of the gel porosity by increasing the hydration temperature. This is attributed to a decrease of the C-S-H intrinsic porosity and a corresponding increase of the C-S-H density for higher curing temperatures. The experimental results are used in a simple analysis method to evaluate the density of C-S-H, as well as its C/S ratio and H/S ratio in dry and saturated conditions. The evaluated C-S-H density varies from 1.88 g/cm(3) at 7 degrees C to 2.10 g/cm(3) at 90 degrees C. The results also show a decrease of molar C/S ratio with increasing hydration temperature from 1.93 at 7 degrees C to 1.71 at 90 degrees C and of the H/S ratio from 5.1 at 7 degrees C to 2.66 at 90 degrees C. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:270 / 281
页数:12
相关论文
共 81 条
  • [1] Alarcon-Ruiz L, CEM CONCR RES, V35
  • [2] Aligizaki K.K., 2005, PORE STRUCTURE CEMEN
  • [3] Composition and density of nanoscale calcium-silicate-hydrate in cement
    Allen, Andrew J.
    Thomas, Jeffrey J.
    Jennings, Hamlin M.
    [J]. NATURE MATERIALS, 2007, 6 (04) : 311 - 316
  • [4] [Anonymous], 2011, THESIS
  • [5] [Anonymous], THESIS
  • [6] Rietveld Quantitative Phase Analysis of OPC Clinkers, Cements and Hydration Products
    Aranda, Miguel A. G.
    De la Torre, Angeles G.
    Leon-Reina, Laura
    [J]. APPLIED MINERALOLGY OF CEMENT & CONCRETE, 2012, 74 : 169 - 209
  • [7] Barnes P., 2002, STRUCTURE PERFORMANC, V2002
  • [8] STRUCTURAL-PROPERTIES OF CALCIUM SILICATE PASTES .2. EFFECT OF CURING TEMPERATURE
    BENTUR, A
    BERGER, RL
    KUNG, JH
    MILESTONE, NB
    YOUNG, JF
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1979, 62 (7-8) : 362 - 366
  • [10] Bhatty J., 1988, The Derivation of Kinetic Parameters in Analysis of Portland Cement for Portlandite and Carbonate by Thermogravimetry