Rigidity of smooth critical circle maps

被引:14
作者
Guarino, Pablo [1 ]
de Melo, Welington [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, Niteroi, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
Critical circle maps; smooth rigidity; renormalization; commuting pairs; QUASI-PERIODICITY; COMPLEX BOUNDS; RENORMALIZATION; DIFFEOMORPHISMS; UNIVERSALITY; SET;
D O I
10.4171/JEMS/704
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any two C-3 critical circle maps with the same irrational rotation number of bounded type and the same odd criticality are conjugate to each other by a C1+alpha circle diffeomorphism, for some universal alpha > 0.
引用
收藏
页码:1729 / 1783
页数:55
相关论文
共 61 条
[1]   RIEMANNS MAPPING THEOREM FOR VARIABLE METRICS [J].
AHLFORS, L ;
BERS, L .
ANNALS OF MATHEMATICS, 1960, 72 (02) :385-404
[2]  
Ahlfors L., 1966, Lectures on quasiconformal mappings
[3]  
Arnold Vladimir I., 1965, AMS Trans. Series 2, V46, P213, DOI 10.1090/trans2/046/11
[4]  
Avila A, 2010, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL I: PLENARY LECTURES AND CEREMONIES, P154
[5]   On rigidity of critical circle maps [J].
Avila, Artur .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (04) :611-619
[6]  
Carleson L., 1993, Complex dynamics, DOI DOI 10.1007/978-1-4612-4364-9
[7]   Asymptotic rigidity of scaling ratios for critical circle mappings [J].
De Faria, E .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 :995-1035
[8]   Rigidity of critical circle mappings II [J].
De Faria, E ;
De Melo, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :343-370
[9]  
de Faria E., 1999, J. Eur. Math. Soc, V1, P339, DOI [10.1007/s100970050011, DOI 10.1007/S100970050011]
[10]  
de Faria E., 1992, THESIS CUNY