We investigate a motion of the incompressible 2D-MHD with power law-type nonlinear viscous fluid. In this paper, we establish the global existence and uniqueness of a weak solution (u, b) depending on a number q in R-2. Moreover, the energy norm of the weak solutions to the fluid flows has decay rate (1 + t)(-1/2).
机构:
Univ Bordeaux, CNRS, UMR 5251, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, FranceUniv Bordeaux, CNRS, UMR 5251, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
机构:
Univ Santiago Chile, Dept Ingn Mecan, Av Libertador Bernardo OHiggins, Santiago 3363, ChileUniv Santiago Chile, Dept Ingn Mecan, Av Libertador Bernardo OHiggins, Santiago 3363, Chile
Aguirre, A.
Castillo, E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago Chile, Dept Ingn Mecan, Av Libertador Bernardo OHiggins, Santiago 3363, ChileUniv Santiago Chile, Dept Ingn Mecan, Av Libertador Bernardo OHiggins, Santiago 3363, Chile
Castillo, E.
Cruchaga, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago Chile, Dept Ingn Mecan, Av Libertador Bernardo OHiggins, Santiago 3363, ChileUniv Santiago Chile, Dept Ingn Mecan, Av Libertador Bernardo OHiggins, Santiago 3363, Chile