Bayesian forecasting with the Holt-Winters model

被引:21
作者
Bermudez, J. D.
Segura, J. V. [2 ]
Vercher, E. [1 ]
机构
[1] Univ Valencia, Dept Stat & OR, E-46100 Valencia, Spain
[2] Univ Miguel Hernandez Elche, Elche, Spain
关键词
forecasting; time series; prediction intervals; simulation; M3-competition; PREDICTION INTERVALS; ACCURACY; DEMAND;
D O I
10.1057/jors.2008.152
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Exponential smoothing methods are widely used as forecasting techniques in inventory systems and business planning, where reliable prediction intervals are also required for a large number of series. This paper describes a Bayesian forecasting approach based on the Holt-Winters model, which allows obtaining accurate prediction intervals. We show how to build them incorporating the uncertainty due to the smoothing unknowns using a linear heteroscedastic model. That linear formulation simplifies obtaining the posterior distribution on the unknowns; a random sample from such posterior, which is not analytical, is provided using an acceptance sampling procedure and a Monte Carlo approach gives the predictive distributions. On the basis of this scheme, point-wise forecasts and prediction intervals are obtained. The accuracy of the proposed Bayesian forecasting approach for building prediction intervals is tested using the 3003 time series from the M3-competition. Journal of the Operational Research Society (2010) 61, 164-171. doi:10.1057/jors.2008.152
引用
收藏
页码:164 / 171
页数:8
相关论文
共 18 条
[1]   SIOPRED: a prediction and optimisation integrated system for demand [J].
Bermudez, J. D. ;
Segura, J. V. ;
Vercher, E. .
TOP, 2008, 16 (02) :258-271
[2]   Holt-winters forecasting:: An alternative formulation applied to UK air passenger data [J].
Bermudez, J. D. ;
Segura, J. V. ;
Vercher, E. .
JOURNAL OF APPLIED STATISTICS, 2007, 34 (09) :1075-1090
[3]   Improving demand forecasting accuracy using nonlinear programming software [J].
Bermúdez, JD ;
Segura, JV ;
Vercher, E .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2006, 57 (01) :94-100
[4]   PREDICTION INTERVALS FOR MULTIPLICATIVE HOLT-WINTERS [J].
CHATFIELD, C ;
YAR, M .
INTERNATIONAL JOURNAL OF FORECASTING, 1991, 7 (01) :31-37
[5]   Exponential smoothing: The state of the art - Part II [J].
Gardner, Everette S., Jr. .
INTERNATIONAL JOURNAL OF FORECASTING, 2006, 22 (04) :637-666
[6]   INTERVAL FORECASTING - AN ANALYSIS BASED UPON ARCH-QUANTILE ESTIMATORS [J].
GRANGER, CWJ ;
WHITE, H ;
KAMSTRA, M .
JOURNAL OF ECONOMETRICS, 1989, 40 (01) :87-96
[7]   Interval forecasts and parameter uncertainty [J].
Hansen, Bruce E. .
JOURNAL OF ECONOMETRICS, 2006, 135 (1-2) :377-398
[8]   Prediction intervals for exponential smoothing using two new classes of state space models [J].
Hyndman, RJ ;
Koehler, AB ;
Ord, JK ;
Snyder, RD .
JOURNAL OF FORECASTING, 2005, 24 (01) :17-37
[9]   A state space framework for automatic forecasting using exponential smoothing methods [J].
Hyndman, RJ ;
Koehler, AB ;
Snyder, RD ;
Grose, S .
INTERNATIONAL JOURNAL OF FORECASTING, 2002, 18 (03) :439-454
[10]   The M3-Competition: results, conclusions and implications [J].
Makridakis, S ;
Hibon, M .
INTERNATIONAL JOURNAL OF FORECASTING, 2000, 16 (04) :451-476