A Review of Inorganic Photoelectrode Developments and Reactor Scale-Up Challenges for Solar Hydrogen Production

被引:88
作者
Moss, Benjamin [1 ]
Babacan, Oytun [2 ,3 ]
Kafizas, Andreas [1 ,3 ,4 ]
Hankin, Anna [5 ,6 ]
机构
[1] Imperial Coll London, Dept Chem, Mol Sci Res Hub, White City Campus, London W12 0BZ, England
[2] Imperial Coll London, Dept Phys, South Kensington Campus, London SW7 2AZ, England
[3] Imperial Coll London, Grantham Inst, South Kensington Campus, London SW7 2AZ, England
[4] Imperial Coll London, London Ctr Nanotechnol, London SW7 2AZ, England
[5] Imperial Coll London, Dept Chem Engn, South Kensington Campus, London SW7 2AZ, England
[6] Imperial Coll London, Inst Mol Sci & Engn, South Kensington Campus, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
hydrogen; inorganic photoelectrodes; photoelectrochemistry; reactor engineering; solar fuels; ENERGY-CONVERSION EFFICIENCY; PARTICULATE PHOTOCATALYST SHEETS; WATER-SPLITTING PERFORMANCE; OXYNITRIDE TAON PHOTOANODE; ENHANCED CHARGE SEPARATION; DOPED TITANIUM-DIOXIDE; BIVO4; PHOTOANODES; Z-SCHEME; HEMATITE PHOTOANODES; PHOTOVOLTAIC-ELECTROLYSIS;
D O I
10.1002/aenm.202003286
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Green hydrogen, produced using solar energy, is a promising means of reducing greenhouse gas emissions. Photoelectrochemical (PEC) water splitting devices can produce hydrogen using sunlight and integrate the distinct functions of photovoltaics and electrolyzers in a single device. There is flexibility in the degree of integration between these electrical and chemical energy generating components, and so a plethora of archetypal PEC device designs has emerged. Although some materials have effectively been ruled out for use in commercial PEC devices, many principles of material design and synthesis have been learned. Here, the fundamental requirements of PEC materials, the top performances of the most widely studied inorganic photoelectrode materials, and reactor structures reported for unassisted solar water splitting are revisited. The main phenomena limiting the performance of up-scaled PEC devices are discussed, showing that engineering must be considered in parallel with material development for the future piloting of PEC water splitting systems. To establish the future commercial viability of this technology, more accurate techno-economic analyses should be carried out using data from larger scale demonstrations, and hence more durable and efficient PEC systems need to be developed that meet the challenges imposed from both material and engineering perspectives.
引用
收藏
页数:43
相关论文
共 351 条
[1]   Mitigating voltage losses in photoelectrochemical cell scale-up [J].
Abdi, Fatwa F. ;
Perez, Ronald Ramiro Gutierrez ;
Haussener, Sophia .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (06) :2734-2740
[2]   Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode [J].
Abdi, Fatwa F. ;
Han, Lihao ;
Smets, Arno H. M. ;
Zeman, Miro ;
Dam, Bernard ;
van de Krol, Roel .
NATURE COMMUNICATIONS, 2013, 4
[3]   Demonstrator devices for artificial photosynthesis: general discussion [J].
Abe, Ryu ;
Aitchison, Catherine M. ;
Andrei, Virgil ;
Beller, Matthias ;
Cheung, Daniel ;
Creissen, Charles E. ;
O'Shea, Victor A. de la Pena ;
Durrant, James R. ;
Gratzel, Michael ;
Hammarstrom, Leif ;
Haussener, Sophia ;
In, Su-Il ;
Kalamaras, Evangelos ;
Kudo, Akihiko ;
Kuehnel, Moritz F. ;
Kunturu, Pramod Patil ;
Lai, Yi-Hsuan ;
Lee, Chong-Yong ;
Maneiro, Marcelino ;
Moore, Esther Edwardes ;
Huu Chuong Nguyen ;
Paris, Aubrey R. ;
Pornrungroj, Chanon ;
Reek, Joost N. H. ;
Reisner, Erwin ;
Schreck, Murielle ;
Smith, Wilson A. ;
Soo, Han Sen ;
Sprick, Reiner Sebastian ;
Venugopal, Anirudh ;
Wang, Qian ;
Wielend, Dominik ;
Zwijnenburg, Martijn A. .
FARADAY DISCUSSIONS, 2019, 215 :345-363
[4]   Facile Fabrication of an Efficient Oxynitride TaON Photoanode for Overall Water Splitting into H2 and O2 under Visible Light Irradiation [J].
Abe, Ryu ;
Higashi, Masanobu ;
Domen, Kazunari .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (34) :11828-11829
[5]   Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting [J].
Ager, Joel W. ;
Shaner, Matthew R. ;
Walczak, Karl A. ;
Sharp, Ian D. ;
Ardo, Shane .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2811-2824
[6]   Demonstration of a 50 cm2 BiVO4 tandem photoelectrochemical-photovoltaic water splitting device [J].
Ahmet, Ibbi Y. ;
Ma, Yimeng ;
Jang, Ji-Wook ;
Henschel, Tobias ;
Stannowski, Bernd ;
Lopes, Tania ;
Vilanova, Antonio ;
Mendes, Adelio ;
Abdi, Fatwa F. ;
van de Krol, Roel .
SUSTAINABLE ENERGY & FUELS, 2019, 3 (09) :2366-2379
[7]   Highly Efficient Water Oxidation Photoanode Made of Surface Modified LaTiO2N Particles [J].
Akiyama, Seiji ;
Nakabayashi, Mamiko ;
Shibata, Naoya ;
Minegishi, Tsutomu ;
Asakura, Yusuke ;
Abdulla-Al-Mamun ;
Hisatomi, Takashi ;
Nishiyama, Hiroshi ;
Katayama, Masao ;
Yamada, Taro ;
Domen, Kazunari .
SMALL, 2016, 12 (39) :5468-5476
[8]   Liquid-gas flow patterns in a narrow electrochemical channel [J].
Alexiadis, A. ;
Dudukovic, M. P. ;
Ramachandran, P. ;
Cornell, A. ;
Wanngard, J. ;
Bokkers, A. .
CHEMICAL ENGINEERING SCIENCE, 2011, 66 (10) :2252-2260
[9]   Influence of Bubbles on the Energy Conversion Efficiency of Electrochemical Reactors [J].
Angulo, Andrea ;
van der Linde, Peter ;
Gardeniers, Han ;
Modestino, Miguel ;
Rivas, David Fernandez .
JOULE, 2020, 4 (03) :555-579
[10]  
[Anonymous], PVSYST Photovoltaic Software