Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows

被引:67
作者
Ramayo-Caldas, Yuliaxis [1 ,2 ]
Zingaretti, Laura [3 ]
Popova, Milka [4 ]
Estelle, Jordi [1 ]
Bernard, Aurelien [4 ]
Pons, Nicolas [5 ]
Bellot, Pau [3 ]
Mach, Nuria [1 ]
Rau, Andrea [1 ]
Roume, Hugo [5 ]
Perez-Enciso, Miguel [3 ]
Faverdin, Philippe [6 ]
Edouard, Nadege [6 ]
Ehrlich, Dusko [5 ]
Morgavi, Diego P. [4 ]
Renand, Gilles [1 ]
机构
[1] Univ Paris Saclay, UMR GABI 1313, AgroParisTech, INRA, Jouy En Josas, France
[2] IRTA Torre Marimon, Anim Breeding & Genet Program, Caldes De Montbui, Spain
[3] UAB, CRAG, Dept Anim Genet, Bellaterra, Spain
[4] Univ Clermont Auvergne, UMR Herbivores 1213, INRA, VetAgro Sup, St Genes Champanelle, France
[5] INRA METAGENOPOLIS Unit, Jouy En Josas, France
[6] INRA, UMR PEGASE 1348, Agrocampus Ouest, St Gilles, France
基金
欧盟地平线“2020”;
关键词
metagenomics; metataxonomics; methane emission; microbial biomarker; CARBON-DIOXIDE EMISSIONS; METHANOGENIC ARCHAEA; MITIGATION; BEEF;
D O I
10.1111/jbg.12427
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Mitigation of greenhouse gas emissions is relevant for reducing the environmental impact of ruminant production. In this study, the rumen microbiome from Holstein cows was characterized through a combination of 16S rRNA gene and shotgun metagenomic sequencing. Methane production (CH4) and dry matter intake (DMI) were individually measured over 4-6 weeks to calculate the CH4 yield (CH(4)y = CH4/DMI) per cow. We implemented a combination of clustering, multivariate and mixed model analyses to identify a set of operational taxonomic unit (OTU) jointly associated with CH(4)y and the structure of ruminal microbial communities. Three ruminotype clusters (R1, R2 and R3) were identified, and R2 was associated with higher CH(4)y. The taxonomic composition on R2 had lower abundance of Succinivibrionaceae and Methanosphaera, and higher abundance of Ruminococcaceae, Christensenellaceae and Lachnospiraceae. Metagenomic data confirmed the lower abundance of Succinivibrionaceae and Methanosphaera in R2 and identified genera (Fibrobacter and unclassified Bacteroidales) not highlighted by metataxonomic analysis. In addition, the functional metagenomic analysis revealed that samples classified in cluster R2 were overrepresented by genes coding for KEGG modules associated with methanogenesis, including a significant relative abundance of the methyl-coenzyme M reductase enzyme. Based on the cluster assignment, we applied a sparse partial least-squares discriminant analysis at the taxonomic and functional levels. In addition, we implemented a sPLS regression model using the phenotypic variation of CH(4)y. By combining these two approaches, we identified 86 discriminant bacterial OTUs, notably including families linked to CH4 emission such as Succinivibrionaceae, Ruminococcaceae, Christensenellaceae, Lachnospiraceae and Rikenellaceae. These selected OTUs explained 24% of the CH(4)y phenotypic variance, whereas the host genome contribution was 14%. In summary, we identified rumen microbial biomarkers associated with the methane production of dairy cows; these biomarkers could be used for targeted methane-reduction selection programmes in the dairy cattle industry provided they are heritable.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 54 条
  • [1] Optimizing test procedures for estimating daily methane and carbon dioxide emissions in cattle using short-term breath measures
    Arthur, P. F.
    Barchia, I. M.
    Weber, C.
    Bird-Gardiner, T.
    Donoghue, K. A.
    Herd, R. M.
    Hegarty, R. S.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2017, 95 (02) : 645 - 656
  • [2] Enterotypes of the human gut microbiome
    Arumugam, Manimozhiyan
    Raes, Jeroen
    Pelletier, Eric
    Le Paslier, Denis
    Yamada, Takuji
    Mende, Daniel R.
    Fernandes, Gabriel R.
    Tap, Julien
    Bruls, Thomas
    Batto, Jean-Michel
    Bertalan, Marcelo
    Borruel, Natalia
    Casellas, Francesc
    Fernandez, Leyden
    Gautier, Laurent
    Hansen, Torben
    Hattori, Masahira
    Hayashi, Tetsuya
    Kleerebezem, Michiel
    Kurokawa, Ken
    Leclerc, Marion
    Levenez, Florence
    Manichanh, Chaysavanh
    Nielsen, H. Bjorn
    Nielsen, Trine
    Pons, Nicolas
    Poulain, Julie
    Qin, Junjie
    Sicheritz-Ponten, Thomas
    Tims, Sebastian
    Torrents, David
    Ugarte, Edgardo
    Zoetendal, Erwin G.
    Wang, Jun
    Guarner, Francisco
    Pedersen, Oluf
    de Vos, Willem M.
    Brunak, Soren
    Dore, Joel
    Weissenbach, Jean
    Ehrlich, S. Dusko
    Bork, Peer
    [J]. NATURE, 2011, 473 (7346) : 174 - 180
  • [3] Identification, Comparison, and Validation of Robust Rumen Microbial Biomarkers for Methane Emissions Using Diverse Bos Taurus Breeds and Basal Diets
    Auffret, Marc D.
    Stewart, Robert
    Dewhurst, Richard J.
    Duthie, Carol-Anne
    Rooke, John A.
    Wallace, Robert J.
    Freeman, Tom C.
    Snelling, Timothy J.
    Watson, Mick
    Roehe, Rainer
    [J]. FRONTIERS IN MICROBIOLOGY, 2018, 8
  • [4] Caliski T., 1974, Commun Stat Simul Comput, V3, P1, DOI [10.1080/03610927408827101, DOI 10.1080/03610927408827101]
  • [5] COLE NA, 1991, J ANIM SCI, V69, P1795
  • [6] Enterotypes in the landscape of gut microbial community composition
    Costea, Paul I.
    Hildebrand, Falk
    Manimozhiyan, Arumugam
    Backhed, Fredrik
    Blaser, Martin J.
    Bushman, Frederic D.
    de Vos, Willem M.
    Ehrlich, S. Dusko
    Fraser, Claire M.
    Hattori, Masahira
    Huttenhower, Curtis
    Jeffery, Ian B.
    Knights, Dan
    Lewis, James D.
    Ley, Ruth E.
    Ochman, Howard
    O'Toole, Paul W.
    Quince, Christopher
    Relman, David A.
    Shanahan, Fergus
    Sunagawa, Shinichi
    Wang, Jun
    Weinstock, George M.
    Wu, Gary D.
    Zeller, Georg
    Zhao, Liping
    Raes, Jeroen
    Knight, Rob
    Bork, Peer
    [J]. NATURE MICROBIOLOGY, 2018, 3 (01): : 8 - 16
  • [7] Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure
    Danielsson, Rebecca
    Dicksved, Johan
    Sun, Li
    Gonda, Horacio
    Muller, Bettina
    Schnurer, Anna
    Bertilsson, Jan
    [J]. FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [8] Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle
    Delgado, Beatriz
    Bach, Alex
    Guasch, Isabel
    Gonzalez, Carmen
    Elcoso, Guillermo
    Pryce, Jennie E.
    Gonzalez-Recio, Oscar
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [9] Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows
    Difford, Gareth Frank
    Plichta, Damian Rafal
    Lovendahl, Peter
    Lassen, Jan
    Noel, Samantha Joan
    Hojberg, Ole
    Wright, Andre-Denis G.
    Zhu, Zhigang
    Kristensen, Lise
    Nielsen, Henrik Bjorn
    Guldbrandtsen, Bernt
    Sahana, Goutam
    [J]. PLOS GENETICS, 2018, 14 (10):
  • [10] Hot topic: Selecting cattle for low residual feed intake did not affect daily methane production but increased methane yield
    Flay, H. E.
    Kuhn-Sherlock, B.
    Macdonald, K. A.
    Camara, M.
    Lopez-Villalobos, N.
    Donaghy, D. J.
    Roche, J. R.
    [J]. JOURNAL OF DAIRY SCIENCE, 2019, 102 (03) : 2708 - 2713