Development of accurate solutions for a classical oscillator

被引:5
作者
Amore, Paolo
Sanchez, Nestor E.
机构
[1] Univ Colima, Fac Ciencia, Colima, Mexico
[2] Univ Texas, Dept Mech Engn, San Antonio, TX 78249 USA
关键词
D O I
10.1016/j.jsv.2006.08.022
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present a method to obtain arbitrarily accurate solutions for conservative classical oscillators. The method that we propose here works both for small and large nonlinearities and provides simple analytical approximations. A comparison with the standard Lindstedt-Poincare method is presented, from which the advantages of our method are clear. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:345 / 351
页数:7
相关论文
共 11 条
[1]   Analytical formulas for gravitational lensing [J].
Amore, P ;
Arceo, S .
PHYSICAL REVIEW D, 2006, 73 (08)
[2]   Systematic perturbation calculation of integrals with applications to physics -: art. no. 016704 [J].
Amore, P ;
Aranda, A ;
Sáenz, R ;
Fernández, FM .
PHYSICAL REVIEW E, 2005, 71 (01)
[3]   The period of a classical oscillator [J].
Amore, P ;
Sáenz, RA .
EUROPHYSICS LETTERS, 2005, 70 (04) :425-431
[4]  
[Anonymous], 1964, Handbook of mathematical functions
[5]   NONPERTURBATIVE PHYSICS FROM INTERPOLATING ACTIONS [J].
DUNCAN, A ;
MOSHE, M .
PHYSICS LETTERS B, 1988, 215 (02) :352-358
[6]   A new perturbation technique which is also valid for large parameters [J].
He, JH .
JOURNAL OF SOUND AND VIBRATION, 2000, 229 (05) :1257-1263
[7]   A modified Mickens procedure for certain non-linear oscillators [J].
Lim, CW ;
Wu, BS .
JOURNAL OF SOUND AND VIBRATION, 2002, 257 (01) :202-206
[8]   A generalized iteration procedure for calculating approximations to periodic solutions of "truly nonlinear oscillators" [J].
Mickens, RE .
JOURNAL OF SOUND AND VIBRATION, 2005, 287 (4-5) :1045-1051
[9]   NONSTANDARD EXPANSION TECHNIQUES FOR THE EFFECTIVE POTENTIAL IN LAMBDA-PHI-4 QUANTUM-FIELD THEORY [J].
OKOPINSKA, A .
PHYSICAL REVIEW D, 1987, 35 (06) :1835-1847
[10]   A view to the new perturbation technique valid for large parameters [J].
Sanchez, NE .
JOURNAL OF SOUND AND VIBRATION, 2005, 282 (3-5) :1309-1316