Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries

被引:61
|
作者
Wang, Shunli [1 ]
Liang, Ying [1 ]
Dai, Tingting [1 ]
Liu, Yalin [1 ]
Sui, Zhuyin [2 ]
Tian, Xinlong [1 ]
Chen, Qi [1 ]
机构
[1] Hainan Univ, Sch Chem Engn & Technol, State Key Lab Marine Resource Utilizat South Chin, Hainan Prov Key Lab Fine Chem, Haikou 570228, Hainan, Peoples R China
[2] Yantai Univ, Sch Chem & Chem Engn, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Cationic covalent organic frameworks; Cathodes; Lithium-sulfur batteries; Post-functionalization; Quaternary ammonium salt;
D O I
10.1016/j.jcis.2021.02.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Covalent organic frameworks (COFs) with pre-designed structure and customized properties have been employed as sulfur storage materials for lithium-sulfur (Li-S) batteries. In this work, a cationic mesoporous COF (COF-NI) was synthesized by grafting a quaternary ammonium salt group onto the pore channel of COFs via a one-pot three components tandem reaction strategy. The post-functionalized COFs were utilized as the matrix framework to successfully construct the Li-S battery with high-speed capacity and long-term stability. The experimental results showed that, after loading active material sulfur, cationic COF-NI effectively suppressed the shuttle effect of the intermediate lithium polysulfide species in Li-S batteries, and exhibited better cycle stability than the as-obtained neutral COF (COF-Bu). For example, compared with COF-Bu based sulfur cathode (521 mA h g(-1)), the cationic COF-NI based sulfur cathode maintained a discharge capacity of 758 mA h g(-1) after 100 cycles. These results clearly showed that appropriate pore environment of COFs can be prepared by rational design, which can reduce the shuttle effect of lithium polysulfide species and improve the performance of Li-S battery. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:264 / 272
页数:9
相关论文
共 50 条
  • [41] A Freestanding Hollow Carbon Nanosphere as Efficient Sulfur Hosts for High-Performance Lithium-Sulfur Batteries
    Xiang, Kaixiong
    Wang, Xianyou
    Chen, Han
    Hu, Jun
    Shu, Hongbo
    Chen, Manfang
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (08) : 1180 - 1184
  • [42] PEO-coated sulfur-carbon composite for high-performance lithium-sulfur batteries
    LinYan Li
    Xiaoyan Liu
    Kunlei Zhu
    Jianhua Tian
    Xuesheng Liu
    Kai Yang
    Zhongqiang Shan
    Journal of Solid State Electrochemistry, 2015, 19 : 3373 - 3379
  • [43] Multistep C/VN frameworks as highly-efficient sulfur host for high-performance lithium-sulfur batteries
    Liu, Ruiqing
    He, Lulu
    Liu, Yiran
    Wu, Jingyi
    Zhu, Wenfeng
    Xie, Kun
    Liu, Wenxiu
    Lin, Xiujing
    Shi, Li
    Wang, Shi
    Feng, Xiaomiao
    Ma, Yanwen
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 315
  • [44] Facile preparation of fullerene nanorods for high-performance lithium-sulfur batteries
    An, Yongling
    Tian, Yuan
    Fei, Huifang
    Zeng, Guifang
    Duan, Hongwei
    Zhang, Sichao
    Zhou, Peng
    Ci, Lijie
    Feng, Jinkui
    MATERIALS LETTERS, 2018, 228 : 175 - 178
  • [45] Boosting High-Performance in Lithium-Sulfur Batteries via Dilute Electrolyte
    Wu, Feixiang
    Chu, Fulu
    Ferrero, Guillermo A.
    Sevilla, Marta
    Fuertes, Antonio B.
    Borodin, Oleg
    Yu, Yan
    Yushin, Gleb
    NANO LETTERS, 2020, 20 (07) : 5391 - 5399
  • [46] Development and Challenges of Functional Electrolytes for High-Performance Lithium-Sulfur Batteries
    Wang, Lili
    Ye, Yusheng
    Chen, Nan
    Huang, Yongxin
    Li, Li
    Wu, Feng
    Chen, Renjie
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
  • [47] Metallic and Dimensional Optimization of Metal-Organic Frameworks for High-Performance Lithium-Sulfur Batteries
    Li, Xinyi
    Zhang, Xuguang
    Xu, Yifan
    Wang, Yige
    Huang, Yang
    Ma, Mengtao
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (31)
  • [48] Embedding covalent sulfur composite inside mesoporous carbon doped with Ni-N sites for high-performance lithium-sulfur batteries
    Chen, Hao-Jie
    Yang, Sen
    Zhang, Miao-Yu
    Sun, Qiang
    JOURNAL OF ENERGY STORAGE, 2024, 91
  • [49] Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries
    Jiang, Jun
    Guo, Tong
    Bai, Wuxin
    Liu, Mingliang
    Liu, Shujun
    Qi, Zhijie
    Sun, Jingwen
    Pan, Shugang
    Vasiliev, Aleksandr L.
    Ma, Zhiyuan
    Wang, Xin
    Zhu, Junwu
    Fu, Yongsheng
    CHINESE CHEMICAL LETTERS, 2024, 35 (04)
  • [50] MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries
    Yin, Lingxia
    Xu, Guiyin
    Nie, Ping
    Dou, Hui
    Zhang, Xiaogang
    CHEMICAL ENGINEERING JOURNAL, 2018, 352 : 695 - 703