Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries

被引:61
|
作者
Wang, Shunli [1 ]
Liang, Ying [1 ]
Dai, Tingting [1 ]
Liu, Yalin [1 ]
Sui, Zhuyin [2 ]
Tian, Xinlong [1 ]
Chen, Qi [1 ]
机构
[1] Hainan Univ, Sch Chem Engn & Technol, State Key Lab Marine Resource Utilizat South Chin, Hainan Prov Key Lab Fine Chem, Haikou 570228, Hainan, Peoples R China
[2] Yantai Univ, Sch Chem & Chem Engn, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Cationic covalent organic frameworks; Cathodes; Lithium-sulfur batteries; Post-functionalization; Quaternary ammonium salt;
D O I
10.1016/j.jcis.2021.02.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Covalent organic frameworks (COFs) with pre-designed structure and customized properties have been employed as sulfur storage materials for lithium-sulfur (Li-S) batteries. In this work, a cationic mesoporous COF (COF-NI) was synthesized by grafting a quaternary ammonium salt group onto the pore channel of COFs via a one-pot three components tandem reaction strategy. The post-functionalized COFs were utilized as the matrix framework to successfully construct the Li-S battery with high-speed capacity and long-term stability. The experimental results showed that, after loading active material sulfur, cationic COF-NI effectively suppressed the shuttle effect of the intermediate lithium polysulfide species in Li-S batteries, and exhibited better cycle stability than the as-obtained neutral COF (COF-Bu). For example, compared with COF-Bu based sulfur cathode (521 mA h g(-1)), the cationic COF-NI based sulfur cathode maintained a discharge capacity of 758 mA h g(-1) after 100 cycles. These results clearly showed that appropriate pore environment of COFs can be prepared by rational design, which can reduce the shuttle effect of lithium polysulfide species and improve the performance of Li-S battery. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:264 / 272
页数:9
相关论文
共 50 条
  • [21] Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries
    Liang, Xiao
    Garsuch, Arnd
    Nazar, Linda F.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (13) : 3907 - 3911
  • [22] Physicochemically Interlocked Sulfur Covalent Triazine Framework for Lithium-Sulfur Batteries with Exceptional Longevity
    Mahato, Manmatha
    Nam, Sanghee
    Lee, Myung-Joon
    Koratkar, Nikhil
    Oh, Il-Kwon
    SMALL, 2023, 19 (30)
  • [23] Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries
    Zhang, Xiaomin
    Li, Gaoran
    Zhang, Yongguang
    Luo, Dan
    Yu, Aiping
    Wang, Xin
    Chen, Zhongwei
    NANO ENERGY, 2021, 86
  • [24] Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate lithium-sulfur batteries
    Meng, Yi
    Lin, Guiqing
    Ding, Huimin
    Liao, Huaping
    Wang, Cheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (35) : 17186 - 17191
  • [25] PEO-coated sulfur-carbon composite for high-performance lithium-sulfur batteries
    Li, LinYan
    Liu, Xiaoyan
    Zhu, Kunlei
    Tian, Jianhua
    Liu, Xuesheng
    Yang, Kai
    Shan, Zhongqiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (11) : 3373 - 3379
  • [26] Zirconia-supported cobalt nanoparticles as high-performance sulfur cathode for lithium-sulfur batteries
    He, Zongke
    Li, Jing
    Zhang, Jinghan
    Zhao, Xinnan
    Wang, Xiaochen
    Wan, Tongtao
    Wu, Changcheng
    Liu, Guihua
    NANOTECHNOLOGY, 2022, 33 (48)
  • [27] Encapsulating Sulfur Into Nickel Decorated Hollow Carbon Fibers for High-Performance Lithium-Sulfur Batteries
    Yu, Dongdong
    Tang, Zhihong
    He, Haiyong
    FRONTIERS IN ENERGY RESEARCH, 2021, 8
  • [28] Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries
    Lin, Zhan
    Liu, Zengcai
    Fu, Wujun
    Dudney, Nancy J.
    Liang, Chengdu
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) : 1064 - 1069
  • [29] Rutile TiO2 Mesocrystals as Sulfur Host for High-Performance Lithium-Sulfur Batteries
    Sun, Qingqing
    Chen, Kaixiang
    Liu, Yubin
    Li, Yafeng
    Wei, Mingdeng
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (64) : 16312 - 16318
  • [30] Graphene oxide-wrapped sulfur/acetylene black for high-performance lithium-sulfur batteries
    Zou, Youlan
    Long, Bo
    Li, Zhaoyang
    Li, Xiaoyu
    Zhang, Zhehao
    IONICS, 2020, 26 (10) : 4929 - 4935