Semilinear PDEs in the Heisenberg group: The role of the right invariant vector fields

被引:12
作者
Birindelli, Isabeau [2 ]
Ferrari, Fausto [3 ,4 ]
Valdinoci, Enrico [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[3] Univ Bologna, Dipartmento Matemat, I-40126 Bologna, Italy
[4] CIRAM, I-40123 Bologna, Italy
关键词
Semilinear PDEs; Heisenberg group; Entire solutions; Stability; SYMMETRY; INEQUALITY;
D O I
10.1016/j.na.2009.07.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some geometric features of the stable solutions of semilinear PDEs in the Heisenberg group are dealt with. A nonexistence result is given. The analysis is carried out by investigating the role of the right invariant vector fields: the monotonicity along these vector fields implies the stability of the solution and it naturally gives rise to geometrically interesting quantities. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:987 / 997
页数:11
相关论文
共 24 条
[11]  
Farina A., T AM MATH S IN PRESS
[12]  
FARINA A, 2009, SER ADV MATH APPL SC
[13]  
Farina A, 2008, ANN SCUOLA NORM-SCI, V7, P741
[14]   Geometric PDEs in the Grushin Plane: Weighted Inequalities and Flatness of Level Sets [J].
Ferrari, Fausto ;
Valdinoci, Enrico .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (22) :4232-4270
[15]   A geometric inequality in the Heisenberg group and its applications to stable solutions of semilinear problems [J].
Ferrari, Fausto ;
Valdinoci, Enrico .
MATHEMATISCHE ANNALEN, 2009, 343 (02) :351-370
[16]   Some Weighted Poincare Inequalities [J].
Ferrari, Fausto ;
Valdinoci, Enrico .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) :1619-1637
[17]  
Franchi B, 2001, MATH ANN, V321, P479
[18]  
Franchi B., 2003, J. Geom. Anal., V13, P421
[19]   HYPOELLIPTIC 2ND ORDER DIFFERENTIAL EQUATIONS [J].
HORMANDE.L .
ACTA MATHEMATICA UPPSALA, 1967, 119 (3-4) :147-&
[20]  
Lieb E.H., 1997, Graduate Studies in Mathematics, V14