Electrochemical properties of surface-modified hard carbon electrodes for lithium-ion batteries

被引:9
作者
Nasara, Ralph Nicolai [1 ,2 ]
Ma, Wen [1 ]
Tsujimoto, Shota [1 ]
Inoue, Yuta [1 ]
Yokoyama, Yuko [1 ,3 ]
Kondo, Yasuyuki [1 ,4 ]
Miyazaki, Kohei [1 ,4 ]
Miyahara, Yuto [1 ]
Fukutsuka, Tomokazu [5 ]
Lin, Shih-kang [2 ,6 ,7 ]
Abe, Takeshi [1 ,4 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Nishikyo Ku, Kyoto 6158510, Japan
[2] Natl Cheng Kung Univ, Dept Mat Sci & Engn, Tainan 70101, Taiwan
[3] Kyoto Univ, Off Soc Acad Collaborat Innovat, Nishikyo Ku, Kyoto 6158510, Japan
[4] Kyoto Univ, Hall Global Environm Res, Nishikyo Ku, Kyoto 6158510, Japan
[5] Nagoya Univ, Grad Sch Engn, Chikusa Ku, Nagoya, Aichi 4648603, Japan
[6] Natl Cheng Kung Univ, Hierarch Green Energy Mat HiGEM Res Ctr, Tainan 70101, Taiwan
[7] Natl Cheng Kung Univ, Ctr Micro Nano Sci & Technol, Tainan 70101, Taiwan
关键词
Hard carbon; Surface modification; Lithium titanate; Lithium-ion batteries;
D O I
10.1016/j.electacta.2021.138175
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Current methods for improving the electrochemical properties of lithium-ion battery electrode materials demand an understanding of its surface property and chemistry. We investigate the electrochemical property of a thin-film Li4Ti5O12 (LTO) layer on a hard carbon (e.g., glass-like carbon) ideal model electrode and propose that its unique properties make it an effective protective coating layer to improve the performance and stability of commercially obtained hard carbon powder. The LTO layer displayed a varying degree of coverage with the number of coatings, which minimized the initial reversible capacity loss because of the continuous electrolyte reduction due to the surface film formation on the GC electrode surface and improved reversibility. With the successful addition of the protective coating layers, the total resistances for interfacial charge transfer was significantly decreased. Using an in situ technique to probe the surface film's electrochemical characteristics, we systematically reveal that the LTO layer functioned as an inner, compact layer with its in situ surface film formation on the surface and resulted in a stable interface and displayed exemplary coverage and shielded most of the direct contact between the GC electrode and electrolyte solution. Furthermore, the LTO layer displayed a notable increase in current density, indicating the increased lithium-ion activity (a(Li+)) at the interface between the GC electrode and the LTO layer resulting in outstanding cyclability and rate performance. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 47 条
[11]   Lithium-ion transfer at an electrolyte/heat-treated nongraphitizable carbon electrode interface [J].
Doi, T ;
Iriyama, Y ;
Abe, T ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (08) :A1521-A1525
[12]   Lithium-ion transfer at an electrolyte/non-graphitizable carbon electrode interface [J].
Doi, T ;
Miyatake, K ;
Iriyama, Y ;
Abe, T ;
Ogumi, Z ;
Nishizawa, T .
CARBON, 2004, 42 (15) :3183-3187
[13]   Review on recent progress of nanostructured anode materials for Li-ion batteries [J].
Goriparti, Subrahmanyam ;
Miele, Ermanno ;
De Angelis, Francesco ;
Di Fabrizio, Enzo ;
Zaccaria, Remo Proietti ;
Capiglia, Claudio .
JOURNAL OF POWER SOURCES, 2014, 257 :421-443
[14]   Nano-Sn/hard carbon composite anode material with high-initial coulombic efficiency [J].
Guo, Bingkun ;
Shu, Jie ;
Tang, Kun ;
Bai, Ying ;
Wang, Zhaoxiang ;
Chen, Liquan .
JOURNAL OF POWER SOURCES, 2008, 177 (01) :205-210
[15]   Large Polarization of Li4Ti5O12 Lithiated to 0 V at Large Charge/Discharge Rates [J].
Han, Cuiping ;
He, Yan-Bing ;
Wang, Shuan ;
Wang, Chao ;
Du, Hongda ;
Qin, Xianying ;
Lin, Zhiqun ;
Li, Baohua ;
Kang, Feiyu .
ACS Applied Materials & Interfaces, 2016, 8 (29) :18788-18796
[16]   Hard Carbon Anodes for Na-Ion Batteries: Toward a Practical Use [J].
Hasegawa, George ;
Kanamori, Kazuyoshi ;
Kannari, Naokatsu ;
Ozaki, Jun-ichi ;
Nakanishi, Kazuki ;
Abe, Takeshi .
CHEMELECTROCHEM, 2015, 2 (12) :1917-1920
[17]   Surface coating with Li-Ti-O to improve the electrochemical performance of Ni-rich cathode material [J].
Huang, Yuping ;
Yao, Xiang ;
Hu, Xinchao ;
Han, Qingyue ;
Wang, Suqing ;
Ding, Liang-Xin ;
Wang, Haihui .
APPLIED SURFACE SCIENCE, 2019, 489 :913-921
[18]  
Inamoto J., 2018, ELECTROCHEMISTRY
[19]   Lithium-Ion Transfer at the Interface between High Potential Negative Electrodes and Ionic Liquids [J].
Ishihara, Yuya ;
Miyazaki, Kohei ;
Fukutsuka, Tomokazu ;
Abe, Takeshi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (14) :A1939-A1942
[20]   Improving the Performance of High Capacity Li-Ion Anode Materials by Lithium Titanate Surface Coating [J].
Ji, Ge ;
Ma, Yue ;
Ding, Bo ;
Lee, Jim Yang .
CHEMISTRY OF MATERIALS, 2012, 24 (17) :3329-3334