Recovering a quasilinear conductivity from boundary measurements

被引:11
作者
Shankar, Ravi [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Calderon problem; elliptic; nonlinear; quasilinear; Dirichlet-to-Neumann map; conductivity; linearization; INVERSE PROBLEMS; UNIQUENESS;
D O I
10.1088/1361-6420/abced7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Calderon type inverse problem of recovering an isotropic quasilinear conductivity from the Dirichlet-to-Neumann map when the conductivity depends on the solution and its gradient. We show that the conductivity can be recovered on an open subset of small gradients, hence extending a partial result of Munoz and Uhlmann to all real analytic conductivities. We also recover non-analytic conductivities with additional growth assumptions along large gradients. Moreover, the results hold for non-homogeneous conductivities if the non-homogeneous part is assumed known.
引用
收藏
页数:24
相关论文
共 21 条
[1]   Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem [J].
Egger, Herbert ;
Pietschmann, Jan-Frederik ;
Schlottbom, Matthias .
INVERSE PROBLEMS, 2014, 30 (03)
[2]  
Feizmohammadi A, 2019, ARXIV190400608
[3]   Limiting Carleman weights and anisotropic inverse problems [J].
Ferreira, David Dos Santos ;
Kenig, Carlos E. ;
Salo, Mikko ;
Uhlmann, Gunther .
INVENTIONES MATHEMATICAE, 2009, 178 (01) :119-171
[4]  
Gilbarg D., 2000, Elliptic Partial Differential Equations of Second Order
[5]  
Guo C Y, 2016, ARXIV160202591
[6]   An inverse boundary value problem for quasilinear elliptic equations [J].
Hervas, D ;
Sun, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (11-12) :2449-2490
[7]  
Hormander L, 2007, ANAL LINEAR PARTIAL
[8]   Uniqueness of recovery of some quasilinear partial differential equations [J].
Isakov, V .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) :1947-1973
[9]   ON UNIQUENESS IN INVERSE PROBLEMS FOR SEMILINEAR PARABOLIC EQUATIONS [J].
ISAKOV, V .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (01) :1-12
[10]   GLOBAL UNIQUENESS FOR A SEMILINEAR ELLIPTIC INVERSE PROBLEM [J].
ISAKOV, V ;
SYLVESTER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (10) :1403-1410