Resolutions of α-stable ideals

被引:40
作者
Gasharov, V [1 ]
Hibi, T
Peeva, I
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Osaka Univ, Grad Sch Sci, Dept Math, Toyohashi, Aichi 5600043, Japan
关键词
monomial ideals; syzygies;
D O I
10.1016/S0021-8693(02)00083-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a = {a(1) less than or equal to a(2) less than or equal to ... less than or equal to a(n)} be a sequence of integers or infinity. We introduce a-stable ideals in a polynomial ring and study their homological properties. Our results generalize results on square-free monomial ideals by Aramova, Avramov, Herzog, Hibi, and Srinivasan. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:375 / 394
页数:20
相关论文
共 14 条
  • [1] Resolutions of monomial ideals and cohomology over exterior algebras
    Aramova, A
    Avramov, LL
    Herzog, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) : 579 - 594
  • [2] Shifting operations and graded Betti numbers
    Aramova, A
    Herzog, J
    Hibi, T
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 12 (03) : 207 - 222
  • [3] ARAMOVA A, 1997, MATH Z, V228, P174
  • [4] ARAMOVA A, 1998, J ALGEBRA, V191, P353
  • [5] AVRAMOV L, 1998, 6 LECT COMMUTATIVE A
  • [6] RESOLUTIONS OBTAINED BY ITERATED MAPPING CONES
    CHARALAMBOUS, H
    EVANS, EG
    [J]. JOURNAL OF ALGEBRA, 1995, 176 (03) : 750 - 754
  • [7] Clements G.F., 1969, J COMB THEORY, V7, P230
  • [8] EISENBUD D, HYPERPLANE ARRANGEME
  • [9] Eisenbud D., 1995, COMMUTATIVE ALGEBRA
  • [10] MINIMAL RESOLUTIONS OF SOME MONOMIAL IDEALS
    ELIAHOU, S
    KERVAIRE, M
    [J]. JOURNAL OF ALGEBRA, 1990, 129 (01) : 1 - 25