On the spectra of striped sign patterns

被引:49
作者
McDonald, JJ [1 ]
Olesky, DD
Tsatsomeros, MJ
van den Driessche, P
机构
[1] Washington State Univ, Dept Math, Pullman, WA 99164 USA
[2] Univ Victoria, Dept Comp Sci, Victoria, BC V8W 3P6, Canada
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
spectrum; nonnegative matrix; sign pattern; Soules matrix; inertia;
D O I
10.1080/0308108031000053639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sign patterns consisting of some positive and some negative columns, with at least one of each kind, are shown to allow any self-conjugate spectrum, and thus to allow any inertia. In the case of the n x n sign pattern with all columns positive, given any self-conjugate multiset consisting of n-1 complex numbers supplemented by a sufficiently large positive number, it is shown how to construct a positive normal matrix whose spectrum is this multiset. Thus, the positive sign pattern allows any inertia with at least one positive eigenvalue.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 10 条
[1]   Spectrally arbitrary patterns [J].
Drew, JH ;
Johnson, CR ;
Olesky, DD ;
van den Driessche, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 308 (1-3) :121-137
[2]  
Elsner L, 1998, LINEAR ALGEBRA APPL, V271, P323
[3]   Potentially nilpotent sign pattern matrices [J].
Eschenbach, CA ;
Li, ZS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 299 (1-3) :81-99
[4]  
Fiedler M., 1974, Linear Algebra and Its Applications, V9, P119, DOI 10.1016/0024-3795(74)90031-7
[5]   Inertially arbitrary pattern [J].
Gao, YB ;
Shao, YL .
LINEAR & MULTILINEAR ALGEBRA, 2001, 49 (02) :161-168
[6]   Symmetric sign pattern matrices that require unique inertia [J].
Hall, FJ ;
Li, ZS ;
Wang, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 338 (338) :153-169
[7]  
Knudsen C., 2001, ELECTRON J LINEAR AL, V8, P110, DOI [10.13001/1081-3810.1064, DOI 10.13001/1081-3810.1064]
[8]  
McDonald J., 2000, CONTEMP MATH, V259, P387, DOI [10.1090/conm/259, DOI 10.1090/CONM/259]
[9]  
Soules GW., 1983, LINEAR MULTILINEAR A, V13, P241, DOI DOI 10.1080/03081088308817523
[10]   Sign pattern matrices that allow a nilpotent matrix [J].
Yeh, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (02) :189-196