Electro-Oxidation of Methane on Platinum under Ambient Conditions

被引:64
作者
Boyd, Michael J. [1 ,2 ]
Latimer, Allegra A. [1 ,2 ]
Dickens, Colin F. [1 ,2 ]
Nielander, Adam C. [1 ,2 ]
Hahn, Christopher [1 ,2 ]
Norskov, Jens K. [4 ]
Higgins, Drew C. [1 ,2 ,3 ]
Jaramillo, Thomas F. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[3] McMaster Univ, Dept Chem Engn, Hamilton, ON L8S 4L7, Canada
[4] Tech Univ Denmark, Dept Phys, Surface Phys & Catalysis, DK-2800 Lyngby, Denmark
基金
美国国家科学基金会;
关键词
platinum; methane; electro-oxidation; DFT; kinetic modeling; NOBLE-METAL ELECTRODES; MULTIPULSE POTENTIODYNAMIC METHOD; FUEL-CELL ANODES; CATALYTIC-OXIDATION; CO ADSORPTION; HYDROCARBONS; ACTIVATION; SURFACES; BEHAVIOR; COPPER;
D O I
10.1021/acscatal.9b01207
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we investigate the electrochemical conversion of methane to CO2 on platinum electrodes under ambient conditions. Through a combination of experimentation, density functional theory (DFT) calculations, and ab initio kinetic modeling, we have developed an improved understanding of the reaction mechanism and the factors that determine catalyst activity. We hypothesized that the rate-determining methane activation step is thermochemical (i.e., CH4(g) -> CH3* + H*) as opposed to electrochemical based on a fitted barrier of approximately 0.96 eV that possesses minimal potential dependence. We developed a simple kinetic model based on the assumption of thermochemical methane activation as the rate-determining step, and the results match well with experimental data. Namely, the magnitude of the maximum current density and the electrode potential at which it is realized agree with our ab initio kinetic model. Finally, we expanded our kinetic model to include other transition metals via a descriptor-based analysis and found platinum to be the most active catalyst for the oxidation of methane, which is in line with previously published experimental observations.
引用
收藏
页码:7578 / 7587
页数:19
相关论文
共 57 条
[21]   ANODIC-OXIDATION OF METHANE [J].
HSIEH, SY ;
CHEN, KM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (08) :1171-1174
[22]   Catalytic conversion of methane to methanol on Cu-SSZ-13 using N2O as oxidant [J].
Ipek, B. ;
Lobo, R. F. .
CHEMICAL COMMUNICATIONS, 2016, 52 (91) :13401-13404
[23]   Trends in CO Oxidation Rates for Metal Nanoparticles and Close-Packed, Stepped, and Kinked Surfaces [J].
Jiang, T. ;
Mowbray, D. J. ;
Dobrin, S. ;
Falsig, H. ;
Hvolbaek, B. ;
Bligaard, T. ;
Norskov, J. K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (24) :10548-10553
[24]   First-principles theory and microcalorimetry of CO adsorption on the {211} surfaces of Pt and Ni [J].
Karmazyn, AD ;
Fiorin, V ;
Jenkins, SJ ;
King, DA .
SURFACE SCIENCE, 2003, 538 (03) :171-183
[25]   SELF-CONSISTENT EQUATIONS INCLUDING EXCHANGE AND CORRELATION EFFECTS [J].
KOHN, W ;
SHAM, LJ .
PHYSICAL REVIEW, 1965, 140 (4A) :1133-&
[26]   New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces [J].
Kuhl, Kendra P. ;
Cave, Etosha R. ;
Abram, David N. ;
Jaramillo, Thomas F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :7050-7059
[27]   Correlation of Methane Activation and Oxide Catalyst Reducibility and Its Implications for Oxidative Coupling [J].
Kumar, Gaurav ;
Lau, Sai Lap Jacky ;
Krcha, Matthew D. ;
Janik, Michael J. .
ACS CATALYSIS, 2016, 6 (03) :1812-1821
[28]   Selective alkane oxidation: hot and cold approaches to a hot problem [J].
Labinger, JA .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2004, 220 (01) :27-35
[29]   Direct Methane to Methanol: The Selectivity-Conversion Limit and Design Strategies [J].
Latimer, Allegra A. ;
Kakekhani, Arvin ;
Kulkarni, Ambarish R. ;
Norskov, Jens K. .
ACS CATALYSIS, 2018, 8 (08) :6894-6907
[30]   Mechanistic insights into heterogeneous methane activation [J].
Latimer, Allegra A. ;
Aljama, Hassan ;
Kakekhani, Arvin ;
Yoo, Jong Suk ;
Kulkarni, Ambarish ;
Tsai, Charlie ;
Garcia-Melchor, Max ;
Abild-Pedersen, Frank ;
Norskov, Jens K. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (05) :3575-3581