Electro-Oxidation of Methane on Platinum under Ambient Conditions

被引:64
作者
Boyd, Michael J. [1 ,2 ]
Latimer, Allegra A. [1 ,2 ]
Dickens, Colin F. [1 ,2 ]
Nielander, Adam C. [1 ,2 ]
Hahn, Christopher [1 ,2 ]
Norskov, Jens K. [4 ]
Higgins, Drew C. [1 ,2 ,3 ]
Jaramillo, Thomas F. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[3] McMaster Univ, Dept Chem Engn, Hamilton, ON L8S 4L7, Canada
[4] Tech Univ Denmark, Dept Phys, Surface Phys & Catalysis, DK-2800 Lyngby, Denmark
基金
美国国家科学基金会;
关键词
platinum; methane; electro-oxidation; DFT; kinetic modeling; NOBLE-METAL ELECTRODES; MULTIPULSE POTENTIODYNAMIC METHOD; FUEL-CELL ANODES; CATALYTIC-OXIDATION; CO ADSORPTION; HYDROCARBONS; ACTIVATION; SURFACES; BEHAVIOR; COPPER;
D O I
10.1021/acscatal.9b01207
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we investigate the electrochemical conversion of methane to CO2 on platinum electrodes under ambient conditions. Through a combination of experimentation, density functional theory (DFT) calculations, and ab initio kinetic modeling, we have developed an improved understanding of the reaction mechanism and the factors that determine catalyst activity. We hypothesized that the rate-determining methane activation step is thermochemical (i.e., CH4(g) -> CH3* + H*) as opposed to electrochemical based on a fitted barrier of approximately 0.96 eV that possesses minimal potential dependence. We developed a simple kinetic model based on the assumption of thermochemical methane activation as the rate-determining step, and the results match well with experimental data. Namely, the magnitude of the maximum current density and the electrode potential at which it is realized agree with our ab initio kinetic model. Finally, we expanded our kinetic model to include other transition metals via a descriptor-based analysis and found platinum to be the most active catalyst for the oxidation of methane, which is in line with previously published experimental observations.
引用
收藏
页码:7578 / 7587
页数:19
相关论文
共 57 条
[1]   The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts [J].
Arenz, M ;
Mayrhofer, KJJ ;
Stamenkovic, V ;
Blizanac, BB ;
Tomoyuki, T ;
Ross, PN ;
Markovic, NM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (18) :6819-6829
[2]   Fundamental limitation of electrocatalytic methane conversion to methanol [J].
Arnarson, Logi ;
Schmidt, Per S. ;
Pandey, Mohnish ;
Bagger, Alexander ;
Thygesen, Kristian S. ;
Stephens, Ifan E. L. ;
Rossmeisl, Jan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (16) :11152-11159
[3]   Surface-enhanced infrared absorption of CO on platinized platinum [J].
Bjerke, AE ;
Griffiths, PR ;
Theiss, W .
ANALYTICAL CHEMISTRY, 1999, 71 (10) :1967-1974
[4]   Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions [J].
Blaylock, D. Wayne ;
Ogura, Teppei ;
Green, William H. ;
Beran, Gregory J. O. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (12) :4898-4908
[5]   Quantitative Coordination-Activity Relations for the Design of Enhanced Pt Catalysts for CO Electro-oxidation [J].
Calle-Vallejo, Federico ;
Pohl, Marcus D. ;
Bandarenka, Aliaksandr S. .
ACS CATALYSIS, 2017, 7 (07) :4355-4359
[6]   THE RATE CONTROLLING STEP IN THE OXIDATIVE COUPLING OF METHANE OVER A LITHIUM-PROMOTED MAGNESIUM-OXIDE CATALYST [J].
CANT, NW ;
LUKEY, CA ;
NELSON, PF ;
TYLER, RJ .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1988, (12) :766-768
[7]   Methane dissociation on the steps and terraces of Pt(211) resolved by quantum state and impact site [J].
Chadwick, Helen ;
Guo, Han ;
Gutierrez-Gonzalez, Ana ;
Menzel, Jan Paul ;
Jackson, Bret ;
Beck, Rainer D. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (01)
[8]   ELECTROCHEMICAL ADSORPTION BEHAVIOR OF PLATINUM STEPPED SURFACES IN SULFURIC-ACID-SOLUTIONS [J].
CLAVILIER, J ;
ARMAND, D ;
SUN, SG ;
PETIT, M .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1986, 205 (1-2) :267-277
[9]  
Durante V. A., 1990, EP, Patent No. 0393895131
[10]   Pseudopotentials for high-throughput DFT calculations [J].
Garrity, Kevin F. ;
Bennett, Joseph W. ;
Rabe, Karin M. ;
Vanderbilt, David .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 81 :446-452