Chimeric Cellobiose Dehydrogenases Reveal the Function of Cytochrome Domain Mobility for the Electron Transfer to Lytic Polysaccharide Monooxygenase

被引:25
作者
Felice, Alfons K. G. [1 ]
Schuster, Christian [1 ]
Kadek, Alan [2 ,3 ]
Filandr, Frantisek [2 ,3 ]
Laurent, Christophe V. F. P. [1 ,4 ]
Scheiblbrandner, Stefan [1 ]
Schwaiger, Lorenz [1 ]
Schachinger, Franziska [1 ]
Kracher, Daniel [1 ]
Sygmund, Christoph [1 ]
Man, Petr [2 ,3 ]
Halada, Petr [2 ]
Oostenbrink, Chris [4 ]
Ludwig, Roland [1 ]
机构
[1] BOKU Univ Nat Resources & Life Sci, Dept Food Sci & Technol, Biocatalysis & Biosensing Res Grp, A-1190 Vienna, Austria
[2] Czech Acad Sci, BIOCEV Inst Microbiol, Vestec 25250, Czech Republic
[3] Charles Univ Prague, Fac Sci, Dept Biochem, Prague 12843, Czech Republic
[4] BOKU Univ Nat Resources & Life Sci, Dept Mat Sci & Proc Engn, A-1190 Vienna, Austria
基金
欧盟地平线“2020”; 奥地利科学基金会;
关键词
cellobiose dehydrogenase; chimeric enzyme; domain swapping electron transfer; lytic polysaccharide monooxygenase; CELLULOSE DEGRADATION; BINDING-AFFINITY; FORCE-FIELD; FLAVOCYTOCHROME; HEME; OXIDOREDUCTASE; ELECTROSTATICS; PROTEINS; INSIGHTS; KINETICS;
D O I
10.1021/acscatal.0c05294
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The natural function of cellobiose dehydrogenase (CDH) to donate electrons from its catalytic flavodehydrogenase (DH) domain via its cytochrome (CYT) domain to lytic polysaccharide monooxygenase (LPMO) is an example of a highly efficient extracellular electron transfer chain. To investigate the function of the CYT domain movement in the two occurring electron transfer steps, two CDHs from the ascomycete Neurospora crassa (NcCDHIIA and NcCDHIIB) and five chimeric CDH enzymes created by domain swapping were studied in combination with the fungus' own LPMOs (NcLPMO9C and NcLPMO9F). Kinetic and electrochemical methods and hydrogen/deuterium exchange mass spectrometry were used to study the domain movement, interaction, and electron transfer kinetics. Molecular docking provided insights into the protein-protein interface, the orientation of domains, and binding energies. We find that the first, interdomain electron transfer step from the catalytic site in the DH domain to the CYT domain depends on steric and electrostatic interface complementarity and the length of the protein linker between both domains but not on the redox potential difference between the FAD and heme b cofactors. After CYT reduction, a conformational change of CDH from its closed state to an open state allows the second, interprotein electron transfer (IPET) step from CYT to LPMO to occur by direct interaction of the b-type heme and the type-2 copper center. Chimeric CDH enzymes favor the open state and achieve higher IPET rates by exposing the heme b cofactor to LPMO. The IPET, which is influenced by interface complementarity and the heme b redox potential, is very efficient with bimolecular rates between 2.9 x 10(5) and 1.1 x 10(6) M-1 s(-1).
引用
收藏
页码:517 / 532
页数:16
相关论文
共 78 条
[1]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[2]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[3]  
Bank R. E., 2003, SIAM REV, V45, P323
[4]   Toward the estimation of the absolute quality of individual protein structure models [J].
Benkert, Pascal ;
Biasini, Marco ;
Schwede, Torsten .
BIOINFORMATICS, 2011, 27 (03) :343-350
[5]   SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information [J].
Biasini, Marco ;
Bienert, Stefan ;
Waterhouse, Andrew ;
Arnold, Konstantin ;
Studer, Gabriel ;
Schmidt, Tobias ;
Kiefer, Florian ;
Cassarino, Tiziano Gallo ;
Bertoni, Martino ;
Bordoli, Lorenza ;
Schwede, Torsten .
NUCLEIC ACIDS RESEARCH, 2014, 42 (W1) :W252-W258
[6]   Structural investigation of cellobiose dehydrogenase IIA: Insights from small angle scattering into intra- and intermolecular electron transfer mechanisms [J].
Bodenheimer, Annette M. ;
ODell, William B. ;
Oliver, Ryan C. ;
Qian, Shuo ;
Stanley, Christopher B. ;
Meilleur, Flora .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2018, 1862 (04) :1031-1039
[7]   Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering [J].
Bodenheimer, Annette M. ;
O'Dell, William B. ;
Stanley, Christopher B. ;
Meilleur, Flora .
CARBOHYDRATE RESEARCH, 2017, 448 :200-204
[8]  
Bowden E. F., J ELECTROANAL CHEM I
[9]   Lytic Polysaccharide Monooxygenases in Enzymatic Processing of Lignocellulosic Biomass [J].
Chylenski, Piotr ;
Bissaro, Bastien ;
Sorlie, Morten ;
Rohr, Asmund K. ;
Varnai, Aniko ;
Horn, Svein J. ;
Eijsink, Vincent G. H. .
ACS CATALYSIS, 2019, 9 (06) :4970-4991
[10]   Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase [J].
Courtade, Gaston ;
Wimmer, Reinhard ;
Rohr, Asmund K. ;
Preims, Marita ;
Felice, Alfons K. G. ;
Dimarogona, Maria ;
Vaaje-Kolstad, Gustav ;
Sorlie, Morten ;
Sandgren, Mats ;
Ludwig, Roland ;
Eijsink, Vincent G. H. ;
Aachmann, Finn Lillelund .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (21) :5922-5927