A High Precision Deep-CNN Framework for Classification of Metabolic Bone Diseases Among Women

被引:0
作者
Navada, Dinesh K. R. [1 ]
Ganesh, S. [1 ]
Bhargavi, K. [1 ]
机构
[1] Siddaganaga Inst Technol, Dept CSE, Tumkur, Karnataka, India
来源
PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES 2018) | 2018年
关键词
CNN; Metabolic bone disease; X-ray; Pooling; Precision; Women; Calcium deficiency;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nowadays women are prone to a variety of metabolic bone diseases like osteoporosis, osteopetrosis, osteomalacia, paget's disease etc. due to calcium deficiency. The existing works fail to dynamically learn generic features of bone from the X-ray image and precisely classify the metabolic bone diseases. So, in this paper a convoluted neural network architecture embedded with deep layers is proposed which significantly classifies the bone diseases with high precision and a lowered error value.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 8 条
  • [1] Asuntha A, 2018, INDIAN J SCI RES, V17
  • [2] Avunuri Prabhakar, 2018, INT J PURE APPL MATH, V118
  • [3] Bohner M, 2005, J BIOMATERIALS, V26
  • [4] Hildebrand T, 1999, J BONE MINERAL RES, V14
  • [5] Li Hui, 2014, IEEE ACM T COMPUTATI
  • [6] Richard H., 1957, AM J MED, V22
  • [7] Artificial neural networks to predict future bone mineral density and bone loss rate in Japanese postmenopausal women
    Shioji M.
    Yamamoto T.
    Ibata T.
    Tsuda T.
    Adachi K.
    Yoshimura N.
    [J]. BMC Research Notes, 10 (1)
  • [8] Sinthia P., 2016, ARPN J ENG APPL SCI