Best constant in Sobolev trace inequalities on the half-space

被引:43
作者
Nazaret, Bruno [1 ]
机构
[1] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
关键词
D O I
10.1016/j.na.2005.05.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a mass transportation method, we study optimal Sobolev trace inequalities on the half-space and prove a conjecture made by Escobar in 1988 about the minimizers. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1977 / 1985
页数:9
相关论文
共 25 条
[1]   Geometric inequalities via a general comparison principle for interacting gases [J].
Agueh, M ;
Ghoussoub, N ;
Kang, X .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (01) :215-244
[2]  
[Anonymous], 1986, ASYMPTOTIC THEORY FI
[3]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[4]   On a reverse form of the Brascamp-Lieb inequality [J].
Barthe, F .
INVENTIONES MATHEMATICAE, 1998, 134 (02) :335-361
[5]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[7]   SOBOLEV INEQUALITIES WITH REMAINDER TERMS [J].
BREZIS, H ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (01) :73-86
[8]   Boundary regularity of maps with convex potentials .2. [J].
Caffarelli, LA .
ANNALS OF MATHEMATICS, 1996, 144 (03) :453-496
[9]   BOUNDARY-REGULARITY OF MAPS WITH CONVEX POTENTIALS [J].
CAFFARELLI, LA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (09) :1141-1151
[10]  
Caffarelli Luis, 1992, J. Am. Math. Soc., V5, P99, DOI [10.2307/2152752, DOI 10.1090/S0894-0347-1992-1124980-8]