Choked accretion onto a Kerr black hole

被引:9
作者
Aguayo-Ortiz, Alejandro [1 ]
Sarbach, Olivier [2 ]
Tejeda, Emilio [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Astron, AP 70-264, Ciudad De Mexico 04510, Mexico
[2] Univ Michoacana, Inst Fis & Matemat, Edificio C-3,Ciudad Univ, Morelia 58040, Michoacan, Mexico
[3] Univ Michoacana, Conacyt Inst Fis & Matemat, Edificio C-3,Ciudad Univ, Morelia 58040, Michoacan, Mexico
关键词
BONDI-HOYLE ACCRETION; ADVECTION-DOMINATED ACCRETION; ROTATING FINITE CLOUD; ANALYTIC SOLUTIONS; CENTRAL OBJECT; FLOWS; RADIATION; HYDRODYNAMICS; SIMULATIONS; DYNAMICS;
D O I
10.1103/PhysRevD.103.023003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The choked accretion model consists of a purely hydrodynamical mechanism in which, by setting an equatorial to polar density contrast, a spherically symmetric accretion flow transitions to an inflow-outflow configuration. This scenario has been studied in the case of a (nonrotating) Schwarzschild black hole as central accretor, as well as in the nonrelativistic limit. In this article, we generalize these previous works by studying the accretion of a perfect fluid onto a (rotating) Kerr black hole. We first describe the mechanism by using a steady-state, irrotational analytic solution of an ultrarelativistic perfect fluid, obeying a stiff equation of state. We then use hydrodynamical numerical simulations in order to explore a more general equation of state. Analyzing the effects of the black hole's rotation on the flow, we find in particular that the choked accretion inflow-outflow morphology prevails for all possible values of the black hole's spin parameter, showing the robustness of the model.
引用
收藏
页数:25
相关论文
共 63 条
[1]   GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. ;
Bae, S. ;
Baker, P. T. .
PHYSICAL REVIEW X, 2019, 9 (03)
[2]  
Abbott R., ARXIV201014533
[3]   Foundations of Black Hole Accretion Disk Theory [J].
Abramowicz, Marek A. ;
Fragile, P. Chris .
LIVING REVIEWS IN RELATIVITY, 2013, 16
[4]   A direct Primitive Variable Recovery Scheme for hyperbolic conservative equations: The case of relativistic hydrodynamics [J].
Aguayo-Ortiz, A. ;
Mendoza, S. ;
Olvera, D. .
PLOS ONE, 2018, 13 (04)
[5]   Choked accretion: from radial infall to bipolar outflows by breaking spherical symmetry [J].
Aguayo-Ortiz, Alejandro ;
Tejeda, Emilio ;
Hernandez, X. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (04) :5078-5087
[6]   Imaging the Schwarzschild-radius-scale Structure of M87 with the Event Horizon Telescope Using Sparse Modeling [J].
Akiyama, Kazunori ;
Kuramochi, Kazuki ;
Ikeda, Shiro ;
Fish, Vincent L. ;
Tazaki, Fumie ;
Honma, Mareki ;
Doeleman, Sheperd S. ;
Broderick, Avery E. ;
Dexter, Jason ;
Moscibrodzka, Monika ;
Bouman, Katherine L. ;
Chael, Andrew A. ;
Zaizen, Masamichi .
ASTROPHYSICAL JOURNAL, 2017, 838 (01)
[7]  
Alcubierre M, 2008, INTRO 3 1 NUMERICAL
[8]   Numerical {3+1} general relativistic hydrodynamics: A local characteristic approach [J].
Banyuls, F ;
Font, JA ;
Ibanez, JM ;
Marti, JM ;
Miralles, JA .
ASTROPHYSICAL JOURNAL, 1997, 476 (01) :221-231
[9]  
Bardeen J.M., 1973, P EC ET PHYS THEOR A, P215
[10]   A VARIATIONAL PRINCIPLE FOR ROTATING STARS IN GENERAL RELATIVITY [J].
BARDEEN, JM .
ASTROPHYSICAL JOURNAL, 1970, 162 (01) :71-+