From the sine-Gordon field theory to the Kardar-Parisi-Zhang growth equation

被引:24
|
作者
Calabrese, Pasquale [1 ,2 ]
Kormos, Marton [3 ]
Le Doussal, Pierre [4 ]
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
[3] MTA BME Momentum Stat Field Theory Res Grp, H-1111 Budapest, Hungary
[4] Ecole Normale Super, CNRS, Phys Theor Lab, F-75231 Paris 05, France
关键词
EXACT FORM-FACTORS; GROWING INTERFACES; DIRECTED POLYMER; BETHE-ANSATZ; FREE-ENERGY; MODEL; FLUCTUATIONS; DIMENSIONS;
D O I
10.1209/0295-5075/107/10011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We unveil a remarkable connection between the sine-Gordon quantum field theory and the Kardar-Parisi-Zhang (KPZ) growth equation. We find that the non-relativistic limit of the two-point correlation function of the sine-Gordon theory is related to the generating function of the height distribution of the KPZ field with droplet initial conditions, i.e. the directed polymer free energy with two endpoints fixed. As shown recently, the latter can be expressed as a Fredholm determinant which in the large-time separation limit converges to the GUE Tracy-Widom cumulative distribution. Possible applications and extensions are discussed. Copyright (C) EPLA, 2014
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth
    Almeida, R. A. L.
    Ferreira, S. O.
    Ribeiro, I. R. B.
    Oliveira, T. J.
    EPL, 2015, 109 (04)
  • [42] Finite-Temperature Free Fermions and the Kardar-Parisi-Zhang Equation at Finite Time
    Dean, David S.
    Le Doussal, Pierre
    Majumdar, Satya N.
    Schehr, Gregory
    PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [43] Universal large-deviation function of the Kardar-Parisi-Zhang equation in one dimension
    Derrida, B
    Appert, C
    JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) : 1 - 30
  • [44] Dynamical phase transition in large-deviation statistics of the Kardar-Parisi-Zhang equation
    Janas, Michael
    Kamenev, Alex
    Meerson, Baruch
    PHYSICAL REVIEW E, 2016, 94 (03)
  • [45] Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: General framework and first applications
    Canet, Leonie
    Chate, Hugues
    Delamotte, Bertrand
    Wschebor, Nicolas
    PHYSICAL REVIEW E, 2011, 84 (06):
  • [46] The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class
    Sasamoto, Tomohiro
    Spohn, Herbert
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [47] Kardar-Parisi-Zhang Equation and Large Deviations for Random Walks in Weak Random Environments
    Corwin, Ivan
    Gu, Yu
    JOURNAL OF STATISTICAL PHYSICS, 2017, 166 (01) : 150 - 168
  • [48] An appetizer to modern developments on the Kardar-Parisi-Zhang universality class
    Takeuchi, Kazumasa A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 504 : 77 - 105
  • [49] Half-space stationary Kardar-Parisi-Zhang equation beyond the Brownian case
    Barraquand, Guillaume
    Krajenbrink, Alexandre
    Le Doussal, Pierre
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (27)
  • [50] Circular Kardar-Parisi-Zhang interfaces evolving out of the plane
    Carrasco, I. S. S.
    Oliveira, T. J.
    PHYSICAL REVIEW E, 2019, 99 (03)