From the sine-Gordon field theory to the Kardar-Parisi-Zhang growth equation

被引:24
|
作者
Calabrese, Pasquale [1 ,2 ]
Kormos, Marton [3 ]
Le Doussal, Pierre [4 ]
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
[3] MTA BME Momentum Stat Field Theory Res Grp, H-1111 Budapest, Hungary
[4] Ecole Normale Super, CNRS, Phys Theor Lab, F-75231 Paris 05, France
关键词
EXACT FORM-FACTORS; GROWING INTERFACES; DIRECTED POLYMER; BETHE-ANSATZ; FREE-ENERGY; MODEL; FLUCTUATIONS; DIMENSIONS;
D O I
10.1209/0295-5075/107/10011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We unveil a remarkable connection between the sine-Gordon quantum field theory and the Kardar-Parisi-Zhang (KPZ) growth equation. We find that the non-relativistic limit of the two-point correlation function of the sine-Gordon theory is related to the generating function of the height distribution of the KPZ field with droplet initial conditions, i.e. the directed polymer free energy with two endpoints fixed. As shown recently, the latter can be expressed as a Fredholm determinant which in the large-time separation limit converges to the GUE Tracy-Widom cumulative distribution. Possible applications and extensions are discussed. Copyright (C) EPLA, 2014
引用
收藏
页数:6
相关论文
共 50 条
  • [21] The 1 + 1 dimensional Kardar-Parisi-Zhang equation: more surprises
    Spohn, Herbert
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (04):
  • [22] Depinning in the quenched Kardar-Parisi-Zhang class. II. Field theory
    Mukerjee, Gauthier
    Wiese, Kay Joerg
    PHYSICAL REVIEW E, 2023, 107 (05)
  • [23] From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class
    Gomes, Waldenor P.
    Penna, Andre L. A.
    Oliveira, Fernando A.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [24] Replica Bethe Ansatz solution to the Kardar-Parisi-Zhang equation on the half-line
    Krajenbrink, Alexandre
    Le Doussal, Pierre
    SCIPOST PHYSICS, 2020, 8 (03):
  • [25] Circular Kardar-Parisi-Zhang equation as an inflating, self-avoiding ring polymer
    Santalla, Silvia N.
    Rodriguez-Laguna, Javier
    Cuerno, Rodolfo
    PHYSICAL REVIEW E, 2014, 89 (01):
  • [26] Non-universal parameters, corrections and universality in Kardar-Parisi-Zhang growth
    Alves, Sidiney G.
    Oliveira, Tiago J.
    Ferreira, Silvio C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [27] Kardar-Parisi-Zhang growth on square domains that enlarge nonlinearly in time
    Carrasco, Ismael S. S.
    Oliveira, Tiago J.
    PHYSICAL REVIEW E, 2022, 105 (05)
  • [28] Weakly Asymmetric Non-Simple Exclusion Process and the Kardar-Parisi-Zhang Equation
    Dembo, Amir
    Tsai, Li-Cheng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) : 219 - 261
  • [29] Kardar-Parisi-Zhang universality class and the anchored Toom interface
    Barkema, G. T.
    Ferrari, P. L.
    Lebowitz, J. L.
    Spohn, H.
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [30] Inverse Scattering of the Zakharov-Shabat System Solves the Weak Noise Theory of the Kardar-Parisi-Zhang Equation
    Krajenbrink, Alexandre
    Le Doussal, Pierre
    PHYSICAL REVIEW LETTERS, 2021, 127 (06)