From the sine-Gordon field theory to the Kardar-Parisi-Zhang growth equation

被引:24
|
作者
Calabrese, Pasquale [1 ,2 ]
Kormos, Marton [3 ]
Le Doussal, Pierre [4 ]
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
[3] MTA BME Momentum Stat Field Theory Res Grp, H-1111 Budapest, Hungary
[4] Ecole Normale Super, CNRS, Phys Theor Lab, F-75231 Paris 05, France
关键词
EXACT FORM-FACTORS; GROWING INTERFACES; DIRECTED POLYMER; BETHE-ANSATZ; FREE-ENERGY; MODEL; FLUCTUATIONS; DIMENSIONS;
D O I
10.1209/0295-5075/107/10011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We unveil a remarkable connection between the sine-Gordon quantum field theory and the Kardar-Parisi-Zhang (KPZ) growth equation. We find that the non-relativistic limit of the two-point correlation function of the sine-Gordon theory is related to the generating function of the height distribution of the KPZ field with droplet initial conditions, i.e. the directed polymer free energy with two endpoints fixed. As shown recently, the latter can be expressed as a Fredholm determinant which in the large-time separation limit converges to the GUE Tracy-Widom cumulative distribution. Possible applications and extensions are discussed. Copyright (C) EPLA, 2014
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Exact Solution for the Stationary Kardar-Parisi-Zhang Equation
    Imamura, Takashi
    Sasamoto, Tomohiro
    PHYSICAL REVIEW LETTERS, 2012, 108 (19)
  • [2] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Corwin, Ivan
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
  • [3] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Quastel, J. D.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 113 - 133
  • [4] Sinc noise for the Kardar-Parisi-Zhang equation
    Niggemann, Oliver
    Hinrichsen, Haye
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [5] Kardar-Parisi-Zhang Interfaces with Inward Growth
    Fukai, Yohsuke T.
    Takeuchi, Kazumasa A.
    PHYSICAL REVIEW LETTERS, 2017, 119 (03)
  • [6] Dimensional crossover in Kardar-Parisi-Zhang growth
    Carrasco, Ismael S. S.
    Oliveira, Tiago J.
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [7] Kardar-Parisi-Zhang growth in ε dimensions and beyond
    Halpin-Healy, Timothy
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [8] Upper critical dimension of the Kardar-Parisi-Zhang equation
    Schwartz, Moshe
    Perlsman, Ehud
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [9] Half-Space Stationary Kardar-Parisi-Zhang Equation
    Barraquand, Guillaume
    Krajenbrink, Alexandre
    Le Doussal, Pierre
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (04) : 1149 - 1203
  • [10] Minimum action method for the Kardar-Parisi-Zhang equation
    Fogedby, Hans C.
    Ren, Weiqing
    PHYSICAL REVIEW E, 2009, 80 (04)