Robust and Versatile Black-Box Certification of Quantum Devices

被引:109
作者
Yang, Tzyh Haur [1 ]
Vertesi, Tamas [2 ]
Bancal, Jean-Daniel [1 ]
Scarani, Valerio [1 ,3 ]
Navascues, Miguel [4 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[2] Hungarian Acad Sci, Inst Nucl Res, H-4001 Debrecen, Hungary
[3] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[4] Univ Bristol, Sch Phys, Bristol BS8 1TL, Avon, England
基金
新加坡国家研究基金会;
关键词
MAXIMAL VIOLATION; INEQUALITIES;
D O I
10.1103/PhysRevLett.113.040401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Self-testing refers to the fact that, in some quantum devices, both states and measurements can be assessed in a black-box scenario, on the sole basis of the observed statistics, i.e., without reference to any prior device calibration. Only a few examples of self-testing are known, and they just provide nontrivial assessment for devices performing unrealistically close to the ideal case. We overcome these difficulties by approaching self-testing with the semidefinite programing hierarchy for the characterization of quantum correlations. This allows us to improve dramatically the robustness of previous self-testing schemes; e.g., we show that a Clauser-Horne-Shimony-Holt violation larger than 2.57 certifies a singlet fidelity of more than 70%. In addition, the versatility of the tool brings about self-testing of hitherto impossible cases, such as the robust self-testing of nonmaximally entangled two-qutrit states in the Collins-Gisin-Linden-Massar-Popescu scenario.
引用
收藏
页数:5
相关论文
共 28 条
[1]   Quantum nonlocality in two three-level systems -: art. no. 052325 [J].
Acín, A ;
Durt, T ;
Gisin, N ;
Latorre, JI .
PHYSICAL REVIEW A, 2002, 65 (05) :523251-523258
[2]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[3]  
[Anonymous], ARXIV12071819
[4]  
Bancal J. D., ARXIV13077053
[5]   Quantum nonlocality, Bell inequalities, and the memory loophole [J].
Barrett, J ;
Collins, D ;
Hardy, L ;
Kent, A ;
Popescu, S .
PHYSICAL REVIEW A, 2002, 66 (04) :9
[6]  
Bell J. S., 1964, Physics, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[7]   Bell nonlocality [J].
Brunner, Nicolas ;
Cavalcanti, Daniel ;
Pironio, Stefano ;
Scarani, Valerio ;
Wehner, Stephanie .
REVIEWS OF MODERN PHYSICS, 2014, 86 (02) :419-478
[8]   Detection-Loophole-Free Test of Quantum Nonlocality, and Applications [J].
Christensen, B. G. ;
McCusker, K. T. ;
Altepeter, J. B. ;
Calkins, B. ;
Gerrits, T. ;
Lita, A. E. ;
Miller, A. ;
Shalm, L. K. ;
Zhang, Y. ;
Nam, S. W. ;
Brunner, N. ;
Lim, C. C. W. ;
Gisin, N. ;
Kwiat, P. G. .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)
[9]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[10]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&