Shrinking and boundedly complete Schauder frames in Frechet spaces

被引:5
作者
Bonet, Jose [1 ]
Fernandez, Carmen [2 ]
Galbis, Antonio [2 ]
Ribera, Juan M. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada IUMPA, E-46071 Valencia, Spain
[2] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
关键词
Atomic decomposition; Schauder basis; Schauder frame; Frechet spaces; (LB)-spaces; Reflexivity; Locally convex spaces; Shrinking; Boundedly complete; INTEGRABLE GROUP-REPRESENTATIONS; LOCALLY CONVEX-SPACES; BANACH-SPACES; ATOMIC DECOMPOSITIONS; APPROXIMATION PROPERTY; COMPLEMENTED SUBSPACE; EXPANSIONS; REGULARITY; SEQUENCES; OPERATORS;
D O I
10.1016/j.jmaa.2013.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Schauder frames in Frechet spaces and their duals, as well as perturbation results. We define shrinking and boundedly complete Schauder frames on a locally convex space, study the duality of these two concepts and their relation with the reflexivity of the space. we characterize when an unconditional Schauder frame is shrinking or boundedly complete in terms of properties of the space. Several examples of concrete Schauder frames in function spaces are also presented. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:953 / 966
页数:14
相关论文
共 37 条
[1]  
[Anonymous], 1979, GRUNDLEHREN MATH WIS
[2]  
Beanland K., ARXIV12022492V1
[3]  
BONET J, 1994, LECT NOTES PURE APPL, V150, P391
[4]   2 THEOREMS OF JOSEFSON-NISSENZWEIG TYPE FOR FRECHET SPACES [J].
BONET, J ;
LINDSTROM, M ;
VALDIVIA, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (02) :363-364
[5]   The reconstruction formula for Banach frames and duality [J].
Carando, Daniel ;
Lassalle, Silvia ;
Schmidberg, Pablo .
JOURNAL OF APPROXIMATION THEORY, 2011, 163 (05) :640-651
[6]   Duality, reflexivity and atomic decompositions in Banach spaces [J].
Carando, Daniel ;
Lassalle, Silvia .
STUDIA MATHEMATICA, 2009, 191 (01) :67-80
[7]   Frame expansions in separable Banach spaces [J].
Casazza, P ;
Christensen, O ;
Stoeva, DT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (02) :710-723
[8]   Coefficient quantization for frames in Banach spaces [J].
Casazza, P. G. ;
Dilworth, S. J. ;
Odell, E. ;
Schlumprecht, Th. ;
Zsak, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) :66-86
[9]  
Casazza PG., 1999, CONT MATH, V247, P149, DOI DOI 10.1090/C0NM/247/03801.MR1738089
[10]   MONTEL SUBSPACES IN THE COUNTABLE PROJECTIVE-LIMITS OF LP (MU)-SPACES [J].
DIAZ, JC .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (02) :169-176