Multiple Solutions of Dirichlet Problems on the Sierpinski Gasket

被引:8
|
作者
Breckner, Brigitte E. [1 ]
Varga, Csaba [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
Sierpinski gasket; Weak Laplacian; Dirichlet problem on the Sierpinski gasket; Weak solution; Critical point; LINKING TYPE SOLUTIONS; MOUNTAIN PASS; PRINCIPLE; EQUATIONS;
D O I
10.1007/s10957-013-0368-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
There are treated nonlinear, elliptic, and parameter-depending problems, defined on the Sierpinski gasket, a highly non-smooth fractal set. Even if the structure of this fractal differs considerably from that of (open) domains of Euclidean spaces, the paper emphasizes that PDEs defined on it may be studied (as in the Euclidean case) by means of certain variational methods. Using such methods, and some recent abstract multiplicity theorems by B. Ricceri, there are proved several results concerning the existence of multiple solutions of three-parameter Dirichlet problems defined on the Sierpinski gasket.
引用
收藏
页码:842 / 861
页数:20
相关论文
共 50 条
  • [41] Maximum density for the Sierpinski gasket
    Zhou, Ji
    Luo, Mao-Kang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) : 597 - 603
  • [42] Dimer Coverings on the Sierpinski Gasket
    Shu-Chiuan Chang
    Lung-Chi Chen
    Journal of Statistical Physics, 2008, 131 : 631 - 650
  • [43] Box dimension of harmonic functions on higher dimensional Sierpinski gasket and Sierpinski gasket with bilateral energy
    Gopalakrishnan, Harsha
    Prasad, Srijanani Anurag
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [44] Spanning forests on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2008, 10 (02): : 55 - 76
  • [45] Extensions and their Minimizations on the Sierpinski Gasket
    Li, Pak-Hin
    Ryder, Nicholas
    Strichartz, Robert S.
    Ugurcan, Baris Evren
    POTENTIAL ANALYSIS, 2014, 41 (04) : 1167 - 1201
  • [46] Harmonic Sierpinski Gasket and Applications
    Guariglia, Emanuel
    ENTROPY, 2018, 20 (09)
  • [47] Fractal interpolation on the Sierpinski Gasket
    Celik, Derya
    Kocak, Sahin
    Ozdemir, Yunus
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 343 - 347
  • [48] Non-linear elliptical equations on the Sierpinski gasket
    Falconer, KJ
    Hu, JX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (02) : 552 - 573
  • [49] Sobolev Orthogonal Polynomials on the Sierpinski Gasket
    Jiang, Qingxuan
    Lan, Tian
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Sule, Shashank
    Venkat, Sreeram
    Wang, Xiaoduo
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (03)
  • [50] Fractal differential equations on the Sierpinski gasket
    Dalrymple, K
    Strichartz, RS
    Vinson, JP
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (2-3) : 203 - 284