Multiple Solutions of Dirichlet Problems on the Sierpinski Gasket

被引:8
|
作者
Breckner, Brigitte E. [1 ]
Varga, Csaba [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
Sierpinski gasket; Weak Laplacian; Dirichlet problem on the Sierpinski gasket; Weak solution; Critical point; LINKING TYPE SOLUTIONS; MOUNTAIN PASS; PRINCIPLE; EQUATIONS;
D O I
10.1007/s10957-013-0368-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
There are treated nonlinear, elliptic, and parameter-depending problems, defined on the Sierpinski gasket, a highly non-smooth fractal set. Even if the structure of this fractal differs considerably from that of (open) domains of Euclidean spaces, the paper emphasizes that PDEs defined on it may be studied (as in the Euclidean case) by means of certain variational methods. Using such methods, and some recent abstract multiplicity theorems by B. Ricceri, there are proved several results concerning the existence of multiple solutions of three-parameter Dirichlet problems defined on the Sierpinski gasket.
引用
收藏
页码:842 / 861
页数:20
相关论文
共 50 条
  • [21] Emergence of the Sierpinski Gasket in Coin-Dividing Problems
    Yamamoto, Ken
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (03) : 534 - 540
  • [22] On the packing measure of the Sierpinski gasket
    Llorente, Marta
    Eugenia Mera, M.
    Moran, Manuel
    NONLINEARITY, 2018, 31 (06) : 2571 - 2589
  • [23] VARIATIONAL ANALYSIS FOR A NONLINEAR ELLIPTIC PROBLEM ON THE SIERPINSKI GASKET
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (04) : 941 - 953
  • [24] GEODESICS OF THE SIERPINSKI GASKET
    Saltan, Mustafa
    Ozdemir, Yunus
    Demir, Bunyamin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [25] On the Application of Monotonicity Methods to the Boundary Value Problems on the Sierpinski Gasket
    Galewski, Marek
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (11) : 1344 - 1354
  • [26] Multiple solutions for some Dirichlet problems with nonlocal terms
    Cammaroto, Filippo
    Faraci, Francesca
    ANNALES POLONICI MATHEMATICI, 2012, 105 (01) : 31 - 42
  • [27] Dimer coverings on the sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) : 631 - 650
  • [28] BOUNDED VARIATION ON THE SIERPINSKI GASKET
    Verma, S.
    Sahu, A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [29] ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK
    Chen, Jin
    He, Long
    Wang, Qin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
  • [30] Orthogonal Polynomials on the Sierpinski Gasket
    Kasso A. Okoudjou
    Robert S. Strichartz
    Elizabeth K. Tuley
    Constructive Approximation, 2013, 37 : 311 - 340