Integrability of and differential-algebraic structures for spatially 1D hydrodynamical systems of Riemann type

被引:8
作者
Blackmore, Denis [1 ,2 ]
Prykarpatsky, Yarema A. [3 ,4 ]
Bogolubov, Nikolai N., Jr. [5 ,6 ]
Prykarpatski, Anatolij K. [7 ]
机构
[1] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Ctr Appl Math & Stat, Newark, NJ 07102 USA
[3] Agr Univ Krakow, Dept Appl Math, Krakow, Poland
[4] Inst Math NAS, Kiev, Ukraine
[5] VA Steklov Math Inst RAS, Moscow, Russia
[6] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
[7] AGH Univ Sci & Technol, PL-30059 Krakow, Poland
基金
美国国家科学基金会;
关键词
CLASSIFICATION; EQUATIONS; MODEL; TRANSFORMATIONS; SYMMETRIES;
D O I
10.1016/j.chaos.2013.11.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A differential-algebraic approach to studying the Lax integrability of a generalized Riemann type hydrodynamic hierarchy is revisited and a new Lax representation is constructed. The related bi-Hamiltonian integrability and compatible Poissonian structures of this hierarchy are also investigated using gradient-holonomic and geometric methods. The complete integrability of a new generalized Riemann hydrodynamic system is studied via a novel combination of symplectic and differential-algebraic tools. A compatible pair of polynomial Poissonian structures, a Lax representation and a related infinite hierarchy of conservation laws are obtained. In addition, the differential-algebraic approach is used to prove the complete lax integrability of the generalized Ostrovsky-Vakhnenko and a new Burgers type system, and special cases are studied using symplectic and gradient-holonomic tools. Compatible pairs of polynomial Poissonian structures, matrix Lax representations and infinite hierarchies of conservation laws are derived. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 81
页数:23
相关论文
共 58 条
  • [1] [Anonymous], 1998, ALGEBRAIC INTEGRABIL
  • [2] [Anonymous], 1979, Funkts. Anal. Prilozhen, DOI 10.1007/BF01076434
  • [3] [Anonymous], 2006, DIFFERENTIAL GEOMETR
  • [4] Blackmore D, 2013, LAX INTEGRABILITY 2
  • [5] Blackmore D, COMPLETE INTEGRABILI
  • [6] Blackmore D., 2011, Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Symplectic Integrability Analysis
  • [7] Blaszak M., 1998, Multi-Hamiltonian Theory of Dynamical Systems
  • [8] Brunelli J, 2012, HAMILTONIAN STRUCTUR
  • [9] On an integrable hierarchy derived from the isentropic gas dynamics
    Brunelli, JC
    Das, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (07) : 2633 - 2645
  • [10] THE HAMILTONIAN-STRUCTURE OF A COMPLEX VERSION OF THE BURGERS HIERARCHY
    BRUSCHI, M
    RAGNISCO, O
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (05) : 943 - 945