Operation modal analysis following fast independent component analysis

被引:1
作者
Wang, Cheng [1 ,2 ]
Wang, Jianying [1 ]
Lai, Xiongming [3 ]
Zhong, Bineng [1 ]
Luo, Xiangyu [1 ]
Ying, Hui [1 ]
Yan, Guirong [2 ]
Chen, Weibin [1 ]
Li, Jing [1 ]
机构
[1] HuaQiao Univ, Coll Comp Sci & Technol, 668 Jimei Rd, Xiamen 361021, Fujian, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian, Shaanxi, Peoples R China
[3] HuaQiao Univ, Coll Mech & Automat, Xiamen, Fujian, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Operation modal analysis; natural frequencies; mode shapes; fast independent component analysis; negative entropy; Newton iteration; ALGORITHMS;
D O I
10.3233/JAE-162201
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Because excellent properties of the fixed-point iteration algorithm of fast independent component analysis algorithm (FastICA) and better statistical properties of negative entropy and Newton iteration, a FastICA effectively combining negative entropy and Newton iteration for OMA is put forward in this paper. Modal parameter identification results on simulation data of beam show that this method could identify the main modal vibration modes and natural frequencies correctly and efficiently only from measured signals of stationary random vibration response and more robustness than gradient descent and information maximization based ICA for OMA.
引用
收藏
页码:103 / 111
页数:9
相关论文
共 16 条
[1]  
Binfeng Xu, 2012, 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, P1787, DOI 10.1109/FSKD.2012.6233878
[2]  
Deuflhard P, 2011, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms
[3]   Cyclic maximization of non-Gaussianity for blind signal extraction of complex-valued sources [J].
Duran-Diaz, Ivan ;
Cruces, Sergio ;
Auxiliadora Sarmiento-Vega, Maria ;
Aguilera-Bonet, Pablo .
NEUROCOMPUTING, 2011, 74 (17) :2867-2873
[4]   Fast and robust fixed-point algorithms for independent component analysis [J].
Hyvärinen, A .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (03) :626-634
[5]  
Hyvärinen A, 2001, INDEPENDENT COMPONENT ANALYSIS: PRINCIPLES AND PRACTICE, P71
[6]   Independent component analysis:: algorithms and applications [J].
Hyvärinen, A ;
Oja, E .
NEURAL NETWORKS, 2000, 13 (4-5) :411-430
[7]   The fixed-point algorithm and maximum likelihood estimation for independent component analysis [J].
Hyvärinen, A .
NEURAL PROCESSING LETTERS, 1999, 10 (01) :1-5
[8]   Independent component analysis: recent advances [J].
Hyvarinen, Aapo .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1984)
[9]   An Introduction to Independent Component Analysis: InfoMax and FastICA algorithms [J].
Langlois, Dominic ;
Chartier, Sylvain ;
Gosselin, Dominique .
TUTORIALS IN QUANTITATIVE METHODS FOR PSYCHOLOGY, 2010, 6 (01) :31-38
[10]  
Luenberger DG, 1997, OPTIMIZATION VECTOR