Some reflections on the understanding of the oxygen reduction reaction at Pt(111)

被引:64
作者
Gomez-Marin, Ana M. [1 ]
Rizo, Ruben [1 ]
Feliu, Juan M. [1 ]
机构
[1] Univ Alicante, Inst Electroquim, E-03080 Alicante, Spain
关键词
hydrogen peroxide oxidation; hydrogen peroxide reduction; oxygen reduction; Pt(111); stepped surfaces; SINGLE-CRYSTAL SURFACES; SCANNING-TUNNELING-MICROSCOPY; PLATINUM STEPPED SURFACES; HYDROGEN-PEROXIDE; PERCHLORIC-ACID; ACTIVATION-ENERGIES; PARTICLE-SIZE; ELECTROCATALYSIS; ADSORPTION; ELECTRODES;
D O I
10.3762/bjnano.4.108
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The oxygen reduction reaction (ORR) is a pivotal process in electrochemistry. Unfortunately, after decades of intensive research, a fundamental knowledge about its reaction mechanism is still lacking. In this paper, a global and critical view on the most important experimental and theoretical results regarding the ORR on Pt(111) and its vicinal surfaces, in both acidic and alkaline media, is taken. Phenomena such as the ORR surface structure sensitivity and the lack of a reduction current at high potentials are discussed in the light of the surface oxidation and disordering processes and the possible relevance of the hydrogen peroxide reduction and oxidation reactions in the ORR mechanism. The necessity to build precise and realistic reaction models, which are deducted from reliable experimental results that need to be carefully taken under strict working conditions is shown. Therefore, progress in the understanding of this important reaction on a molecular level, and the choice of the right approach for the design of the electrocatalysts for fuel-cell cathodes is only possible through a cooperative approach between theory and experiments.
引用
收藏
页码:956 / 967
页数:12
相关论文
共 73 条
[1]   EFFECT OF UNDERPOTENTIAL DEPOSITION (UPD) OF COPPER ON OXYGEN REDUCTION AT PT(111) SURFACES [J].
ABE, T ;
SWAIN, GM ;
SASHIKATA, K ;
ITAYA, K .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 382 (1-2) :73-83
[2]   Ab initio approach to calculating activation energies as functions of electrode potential - Trial application to four-electron reduction of oxygen [J].
Anderson, AB ;
Albu, TV .
ELECTROCHEMISTRY COMMUNICATIONS, 1999, 1 (06) :203-206
[3]   Ab initio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction [J].
Anderson, AB ;
Albu, TV .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (50) :11855-11863
[4]   Catalytic effect of platinum on oxygen reduction -: An ab initio model including electrode potential dependence [J].
Anderson, AB ;
Albu, TV .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (11) :4229-4238
[5]  
APPLEBY AJ, 1970, CATALY REV, V4, P221
[6]   Adsorption and dissociation of H2O2 on Pt and Pt-alloy clusters and surfaces [J].
Balbuena, Perla B. ;
Calvo, Sergio R. ;
Lamas, Eduardo J. ;
Salazar, Pablo F. ;
Seminario, Jorge M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (35) :17452-17459
[7]   New understanding of the nature of OH adsorption on Pt(111) electrodes [J].
Berna, Antonio ;
Climent, Victor ;
Feliu, Juan M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (12) :2789-2794
[8]   Electrochemical surface reordering of Pt(111): A quantification of the place-exchange process [J].
Bjoerling, Alexander ;
Feliu, Juan M. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2011, 662 (01) :17-24
[9]   Kinetics of surface modification induced by submonolayer electrochemical oxygen adsorption on Pt(111) [J].
Bjoerling, Alexander ;
Ahlberg, Elisabet ;
Feliu, Juan M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (03) :359-361
[10]   ELECTROCHEMISTRY AT PLATINUM SINGLE-CRYSTAL SURFACES IN ACIDIC MEDIA - HYDROGEN AND OXYGEN-ADSORPTION [J].
CLAVILIER, J ;
RODES, A ;
ELACHI, K ;
ZAMAKHCHARI, MA .
JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1991, 88 (7-8) :1291-1337