Exploring Data Augmentation to Improve Music Genre Classification with ConvNets

被引:0
作者
Aguiar, Rafael L. [1 ]
Costa, Yandre M. G. [2 ]
Silla Jr, Carlos N. [1 ]
机构
[1] Pontifical Catholic Univ Parana PUCPR, Postgrad Program Informat PPGIa, Curitiba, Parana, Brazil
[2] State Univ Maringa UEM, Grad Program Comp Sci PCC, Maringa, Parana, Brazil
来源
2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2018年
关键词
Data augmentation; Music information retrieval; Automatic music genre classification; Spectrograms; Deep learning; Convolutional Neural Networs; CONVOLUTIONAL NEURAL-NETWORKS; FEATURES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we address the automatic music genre classification as a pattern recognition task. The content of the music pieces were handled in the visual domain, using spectrograms created from the audio signal. This kind of image has been successfully used in this task since 2011 by extracting handcrafted features based on texture, since it is the main visual attribute found in spectrograms. In this work, the patterns were described by representation learning obtained with the use of convolutional neural network (CNN). CNN is a deep learning architecture and it has been widely used in the pattern recognition literature. Overfitting is a recurrent problem when a classification task is addressed by using CNN, it may occur due to the lack of training samples and/or due to the high dimensionality of the space. To increase the generalization capability we propose to explore data augmentation techniques. In this work, we have carefully selected strategies of data augmentation that are suitable for this kind of application, which are: adding noise, pitch shifting, loudness variation and time stretching. Experiments were conducted on the Latin Music Database (LMD), and the best obtained accuracy overcame the state of the art considering approaches based only in CNN.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Music Genre Classification by Analyzing the Subband Spectrogram
    Chou, Chih-Hsun
    Liao, Bo-Jun
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3, 2014, : 1676 - +
  • [22] Evaluating Music Embeddings for Song Genre Classification
    Shah, Sapan Anupkumar
    Mankad, Sapan H.
    Yogi, Meet J.
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [23] Music Genre Classification from Turkish Lyrics
    Coban, Onder
    Ozyer, Gulsah Tumuklu
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 101 - 104
  • [24] Deep attention based music genre classification
    Yu, Yang
    Luo, Sen
    Liu, Shenglan
    Qiao, Hong
    Liu, Yang
    Feng, Lin
    NEUROCOMPUTING, 2020, 372 : 84 - 91
  • [25] A Study on Broadcast Networks for Music Genre Classification
    Heakl, Ahmed
    Abdelgawad, Abdelrahman
    Parque, Victor
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [26] Automatic Music Genre Classification Based on CRNN
    Cheng, Yu-Huei
    Chang, Pang-Ching
    Nguyen, Duc-Man
    Kuo, Che-Nan
    ENGINEERING LETTERS, 2021, 29 (01) : 312 - 316
  • [27] Recurrent Neural Networks for Music Genre Classification
    Kakarla, Chaitanya
    Eshwarappa, Vidyashree
    Saheer, Lakshmi Babu
    Oghaz, Mahdi Maktabdar
    ARTIFICIAL INTELLIGENCE XXXIX, AI 2022, 2022, 13652 : 267 - 279
  • [28] Music Genre Classification With Machine Learning Techniques
    Karatana, Ali
    Yildiz, Oktay
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [29] Music Genre Classification Using Contrastive Dissimilarity
    Costanzi, Gabriel Henrique
    Teixeira, Lucas O.
    Felipe, Gustavo Z.
    Cavalcanti, George D. C.
    Costa, Yandre M. G.
    2024 31ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, IWSSIP 2024, 2024,
  • [30] INVARIANCES AND DATA AUGMENTATION FOR SUPERVISED MUSIC TRANSCRIPTION
    Thickstun, John
    Harchaoui, Zaid
    Foster, Dean P.
    Kakade, Sham M.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2241 - 2245