Evaluating short-term forecasting of COVID-19 cases among different epidemiological models under a Bayesian framework

被引:8
作者
Li, Qiwei [1 ]
Bedi, Tejasv [1 ]
Lehmann, Christoph U. [2 ,3 ,4 ]
Xiao, Guanghua [3 ,4 ]
Xie, Yang [3 ,4 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, 800 W Campbell Rd, Richardson, TX 75080 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Pediat, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Lyda Hill Dept Bioinformat, Dallas, TX 75390 USA
[4] Univ Texas Southwestern Med Ctr Dallas, Dept Populat & Data Sci, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
COVID-19; SARS-CoV-2; stochastic growth model; stochastic SIR model; time-series cross-validation; REPRODUCTION NUMBER; GROWTH CURVE; CHINA; PARAMETERS; DENGUE;
D O I
10.1093/gigascience/giab009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Forecasting of COVID-19 cases daily and weekly has been one of the challenges posed to governments and the health sector globally. To facilitate informed public health decisions, the concerned parties rely on short-term daily projections generated via predictive modeling. We calibrate stochastic variants of growth models and the standard susceptible-infectious-removed model into 1 Bayesian framework to evaluate and compare their short-term forecasts. Results: We implement rolling-origin cross-validation to compare the short-term forecasting performance of the stochastic epidemiological models and an autoregressive moving average model across 20 countries that had the most confirmed COVID-19 cases as of August 22, 2020. Conclusion: None of the models proved to be a gold standard across all regions, while all outperformed the autoregressive moving average model in terms of the accuracy of forecast and interpretability.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Data-based analysis, modelling and forecasting of the COVID-19 outbreak [J].
Anastassopoulou, Cleo ;
Russo, Lucia ;
Tsakris, Athanasios ;
Siettos, Constantinos .
PLOS ONE, 2020, 15 (03)
[2]  
Bailey N.T.J., 1975, The mathematical theory of infectious diseases and its applications, V2nd, P413
[3]  
Batista M, 2020, ESTIMATION FINAL SIZ, DOI [10.1101/2020.02.16.20023606, DOI 10.1101/2020.02.16.20023606]
[4]  
Bullock J, 2020, J ARTIF INTELL RES, V69, P807
[5]   Real-time forecasting of epidemic trajectories using computational dynamic ensembles [J].
Chowell, G. ;
Luo, R. ;
Sun, K. ;
Roosa, K. ;
Tariq, A. ;
Viboud, C. .
EPIDEMICS, 2020, 30
[6]  
Chowell Gerardo, 2014, PLoS Curr, V6, DOI 10.1371/currents.outbreaks.b4690859d91684da963dc40e00f3da81
[7]   A novel sub-epidemic modeling framework for short-term forecasting epidemic waves [J].
Chowell, Gerardo ;
Tariq, Amna ;
Hyman, James M. .
BMC MEDICINE, 2019, 17 (01)
[8]  
Chowell Gerardo, 2017, Infect Dis Model, V2, P379, DOI 10.1016/j.idm.2017.08.001
[9]  
Chowell Gerardo, 2016, PLoS Curr, V8, DOI 10.1371/currents.outbreaks.f14b2217c902f453d9320a43a35b9583
[10]  
Distante C., 2020, FORECASTING COVID 19