A free boundary problem for an elliptic system

被引:8
作者
Fotouhi, Morteza [1 ]
Shahgholian, Henrik [2 ]
Weiss, Georg S. [3 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[3] Univ Duisburg Essen, Dept Math, Essen, Germany
基金
瑞典研究理事会;
关键词
D O I
10.1016/j.jde.2021.02.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study solutions and the free boundary partial derivative{vertical bar u vertical bar > 0} of the sublinear system Delta u = lambda(+)(x)vertical bar u(+)vertical bar(q-1)u(+) - lambda(-)(x)vertical bar u(-)vertical bar(q-1)u(-), from a regularity point of view. For lambda +/-(x) > 0 and Holder, and 0 < q< 1, we apply the epiperimetric inequality approach and show C-1,C-ss-regularity for the free boundary at asymptotically flat points. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 155
页数:30
相关论文
共 13 条
[1]  
ALT HW, 1986, J REINE ANGEW MATH, V368, P63
[2]   Equilibrium points of a singular cooperative system with free boundary [J].
Andersson, John ;
Shahgholian, Henrik ;
Uraltseva, Nina N. ;
Weiss, Georg S. .
ADVANCES IN MATHEMATICS, 2015, 280 :743-771
[3]   PARTIAL REGULARITY OF THE ZERO-SET OF SOLUTIONS OF LINEAR AND SUPERLINEAR ELLIPTIC-EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 60 (03) :420-433
[4]   A logarithmic epiperimetric inequality for the obstacle problem [J].
Colombo, Maria ;
Spolaor, Luca ;
Velichkov, Bozhidar .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (04) :1029-1061
[5]   The Singular Set for a Semilinear Unstable Problem [J].
Fotouhi, Morteza .
POTENTIAL ANALYSIS, 2018, 49 (03) :411-422
[6]   A semilinear PDE with free boundary [J].
Fotouhi, Morteza ;
Shahgholian, Henrik .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 151 :145-163
[7]   THE FREE-BOUNDARY OF A SEMILINEAR ELLIPTIC EQUATION [J].
FRIEDMAN, A ;
PHILLIPS, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (01) :153-182
[8]  
Gilbarg D., 1998, ELLIPTIC PARTIAL DIF, V224
[9]   HAUSDORFF MEASURE ESTIMATES OF A FREE-BOUNDARY FOR A MINIMUM PROBLEM [J].
PHILLIPS, D .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1983, 8 (13) :1409-1454