Robust and Highly Ion-Conducting Gel Polymer Electrolytes with Semi-Interpenetrating Polymer Network Structure

被引:10
作者
Gu, Min Guk [1 ]
Song, Eunseok [1 ]
Kim, Sung-Kon [1 ]
机构
[1] Jeonbuk Natl Univ, Sch Chem Engn, 567 Baekje Daero, Jeonju Si 54896, Jeolabuk Do, South Korea
基金
新加坡国家研究基金会;
关键词
polymer synthesis; gel polymer electrolyte; semi-interpenetrating polymer network; energy storage; lithium-ion battery; POLY(VINYLIDENE FLUORIDE-CO-HEXAFLUOROPROPYLENE); BATTERY; PERFORMANCE; BEHAVIOR; HFP;
D O I
10.1007/s13233-021-9025-4
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Here we report gel polymer electrolytes (GPEs) formed by the film casting of the solution containing poly(ethylene glycol) methyl ether methacrylate (PEGMA) and trimethylolpropane ethoxylate triacrylate (ETPTA) with poly(vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP), followed by the thermal radical polymerization and liquid electrolyte absorption. The resulting GPEs show a semi-interpenetrating polymer network (SIPN) structure that provides film robustness which is investigated by morphological, structural, and electrochemical studies. Particularly, the GPE prepared by the composition of 98 mol% PEGMA and 2 mol% ETPTA in the presence of 40 wt% of PVDF-HFP (relative to total amount of PEGMA and ETPTA) manifests large ionic conductivity (1.46 x 10(-3) S cm(-1)) and tensile strength (6.28 MPa at elongation at break of 156%) at a room temperature due to large uptake of the liquid electrolyte (up to 267%) and SIPN structure. We also verify that the GPE is electrochemically stable up to 4.7 V (vs. Li/L+), suggesting it holds the great promise of a polymer electrolyte membrane for energy storages such as rechargeable batteries or supercapacitors.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 32 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] Solid polymer electrolytes containing poly(ethylene glycol) and renewable cardanol moieties for all-solid-state rechargeable lithium batteries
    Baik, Ji-Hoon
    Kim, Dong-Gyun
    Shim, Jimin
    Lee, Jin Hong
    Choi, Yong-Seok
    Lee, Jong-Chan
    [J]. POLYMER, 2016, 99 : 704 - 712
  • [3] Charge Carrier Relaxation in Different Plasticized PEO/PVDF-HFP Blend Solid Polymer Electrolytes
    Das, S.
    Ghosh, A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (21) : 5422 - 5432
  • [4] Nanocomposite solid polymer electrolytes based on semi-interpenetrating hybrid polymer networks for high performance lithium metal batteries
    Fedeli, Elisabetta
    Garcia-Calvo, Oihane
    Tho Thieu
    Phan, Trang N. T.
    Gigmes, Didier
    Urdampilleta, Idoia
    Kvasha, Andriy
    [J]. ELECTROCHIMICA ACTA, 2020, 353
  • [5] UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries
    Ha, Hyo-Jeong
    Kil, Eun-Hye
    Kwon, Yo Han
    Kim, Je Young
    Lee, Chang Kee
    Lee, Sang-Young
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (04) : 6491 - 6499
  • [6] Ibrahim S, 2011, INT J ELECTROCHEM SC, V6, P5565
  • [7] Karuppasamy K, 2016, J IND ENG CHEM, V40, P168
  • [8] Star-shaped polymers having side chain poss groups for solid polymer electrolytes; synthesis, thermal behavior, dimensional stability, and ionic conductivity
    Kim, Dong-Gyun
    Sohn, Hae-Sung
    Kim, Sung-Kon
    Lee, Aeri
    Lee, Jong-Chan
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2012, 50 (17) : 3618 - 3627
  • [9] Organic/Inorganic Hybrid Block Copolymer Electrolytes with Nanoscale Ion-Conducting Channels for Lithium Ion Batteries
    Kim, Sung-Kon
    Kim, Dong-Gyun
    Lee, Aeri
    Sohn, Hae-Sung
    Wie, Jeong Jae
    Nguyen, Ngoc A.
    Mackay, Michael E.
    Lee, Jong-Chan
    [J]. MACROMOLECULES, 2012, 45 (23) : 9347 - 9356
  • [10] Electrochemical performance of lithium/sulfur batteries with protected Li anodes
    Lee, YM
    Choi, NS
    Park, JH
    Park, JK
    [J]. JOURNAL OF POWER SOURCES, 2003, 119 : 964 - 972