The rectifiable distance in the unitary Fredholm group

被引:18
|
作者
Andruchow, Esteban [1 ]
Larotonda, Gabriel
机构
[1] Univ Nacl Gen Sarmiento, Inst Ciencias, Buenos Aires, DF, Argentina
关键词
C*-algebra; finite trace; Fredholm operator; geodesic convexity; homogeneous space; rectifiable distance; unitary group; FINITE ALGEBRA; CONVEXITY; GEOMETRY; SPACES; SUBSPACES;
D O I
10.4064/sm196-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U-c(H) = {u : u unitary and u - 1 compact} stand for the unitary Fredholm group. We prove the following convexity result. Denote by d(infinity) the rectifiable distance induced by the Finsler metric given by the operator norm in U-c(H). If u(0), u(1), u is an element of U-c(H) and the geodesic beta joining u(0) and u(1) in U-c(H) satisfy d(infinity) (u, beta) < pi/2, then the map f (s) = d(infinity)(u, beta(s)) is convex for s is an element of [0,1]. In particular, the convexity radius of the geodesic balls in U-c(H) is pi/4. The same convexity property holds in the p-Schatten unitary groups U-p(H) = {u : u unitary and u - 1 in the p-Schatten class} for p an even integer, p >= 4 (in this case, the distance is strictly convex). The same results hold in the unitary group of a C*-algebra with a faithful finite trace. We apply this convexity result to establish the existence of curves of minimal length with given initial conditions, in the unitary orbit of an operator, under the action of the Fredholm group. We characterize self-adjoint operators A such that this orbit is a submanifold (of the affine space A+K(H), where K(H) = compact operators).
引用
收藏
页码:151 / 178
页数:28
相关论文
共 50 条
  • [1] ISOMETRIES OF THE UNITARY GROUP
    Hatori, Osamu
    Molnar, Lajos
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (06) : 2127 - 2140
  • [2] The Distance From the Holomorphically Decomposable Fredholm Spectrum
    Tajmouati, A.
    El Bakkali, A.
    Ahmed, M. B. Mohamed
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (04): : 137 - 144
  • [3] AUTOMATIC CONTINUITY FOR THE UNITARY GROUP
    Tsankov, Todor
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (10) : 3673 - 3680
  • [4] On the algebraic structure of the unitary group
    Ricard, Eric
    Rosendal, Christian
    COLLECTANEA MATHEMATICA, 2007, 58 (02) : 181 - 192
  • [5] UNITARY STEINBERG GROUP IS CENTRALLY CLOSED
    Lavrenov, A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2013, 24 (05) : 783 - 794
  • [6] Preservers of unitary group or equivalence by unitaries
    Petek, Tatjana
    Radic, Gordana
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 633 : 1 - 22
  • [7] Minimal logarithmic signatures for the unitary group
    Hong, Haibo
    Wang, Licheng
    Yang, Yixian
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 77 (01) : 179 - 191
  • [8] Linear maps transforming the unitary group
    Cheung, WS
    Li, CK
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (01): : 54 - 58
  • [9] Transformations of the unitary group on a Hilbert space
    Molnar, Lajos
    Semrl, Peter
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 1205 - 1217
  • [10] Isomorphisms of the unitary group over a ring
    Ismagilova A.S.
    Journal of Mathematical Sciences, 2008, 149 (2) : 1074 - 1086