Automated segmentation of endometrial cancer on MR images using deep learning

被引:37
|
作者
Hodneland, Erlend [1 ,2 ,4 ]
Dybvik, Julie A. [2 ,3 ]
Wagner-Larsen, Kari S. [2 ,3 ]
Solteszova, Veronika [1 ,2 ]
Munthe-Kaas, Antonella Z. [2 ,4 ]
Fasmer, Kristine E. [2 ,3 ]
Krakstad, Camilla [5 ,6 ]
Lundervold, Arvid [2 ,7 ]
Lundervold, Alexander S. [2 ,8 ]
Salvesen, Oyvind [9 ]
Erickson, Bradley J. [10 ]
Haldorsen, Ingfrid [2 ,3 ]
机构
[1] NORCE Norwegian Res Ctr, Bergen, Norway
[2] Haukeland Hosp, MMIV Mohn Med Imaging & Visualizat Ctr, Dept Radiol, Bergen, Norway
[3] Univ Bergen, Dept Clin Med, Sect Radiol, Bergen, Norway
[4] Univ Bergen, Dept Math, Bergen, Norway
[5] Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen, Norway
[6] Haukeland Hosp, Dept Obstet & Gynecol, Bergen, Norway
[7] Univ Bergen, Dept Biomed, Bergen, Norway
[8] Western Norway Univ Appl Sci, Bergen, Norway
[9] Norwegian Univ Sci & Technol, Dept Publ Hlth & Gen Practice, Trondheim, Norway
[10] Mayo Clin, Dept Radiol, Rochester, MN USA
关键词
LESION;
D O I
10.1038/s41598-020-80068-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, p=0.06). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, p=0.08, p=0.60, and p=0.05). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Automated Segmentation of Whole Cardiac CT Images based on Deep Learning
    Ahmed, Rajpar Suhail
    Liu, Jie
    Tunio, Muhammad Zahid
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (04) : 466 - 473
  • [42] Deep learning in mammography images segmentation and classification: Automated CNN approach
    Salama, Wessam M.
    Aly, Moustafa H.
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (05) : 4701 - 4709
  • [43] Automated segmentation of articular disc of the temporomandibular joint on magnetic resonance images using deep learning
    Shota Ito
    Yuichi Mine
    Yuki Yoshimi
    Saori Takeda
    Akari Tanaka
    Azusa Onishi
    Tzu-Yu Peng
    Takashi Nakamoto
    Toshikazu Nagasaki
    Naoya Kakimoto
    Takeshi Murayama
    Kotaro Tanimoto
    Scientific Reports, 12
  • [44] Automated Scar Segmentation From CMR-LGE Images Using a Deep Learning Approach
    Moccia, Sara
    Banali, Riccardo
    Martini, Chiara
    Moscogiuri, Giuseppe
    Pontone, Gianluca
    Pepi, Mauro
    Caiani, Enrico Gianluca
    2018 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2018, 45
  • [45] Automated segmentation of insect anatomy from micro-CT images using deep learning
    Toulkeridou, Evropi
    Gutierrez, Carlos Enrique
    Baum, Daniel
    Doya, Kenji
    Economo, Evan P.
    NATURAL SCIENCES, 2023, 3 (04):
  • [46] Automated detection and segmentation of internal defects in reinforced concrete using deep learning on ultrasonic images
    Kuchipudi, Sai Teja
    Ghosh, Debdutta
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
  • [47] An Automated Deep Learning Approach for Spine Segmentation and Vertebrae Recognition Using Computed Tomography Images
    Saeed, Muhammad Usman
    Dikaios, Nikolaos
    Dastgir, Aqsa
    Ali, Ghulam
    Hamid, Muhammad
    Hajjej, Fahima
    DIAGNOSTICS, 2023, 13 (16)
  • [48] Automated Segmentation of Optical Coherence Tomography Images of the Human Tympanic Membrane Using Deep Learning
    Oghalai, Thomas P.
    Long, Ryan
    Kim, Wihan
    Applegate, Brian E.
    Oghalai, John S.
    ALGORITHMS, 2023, 16 (09)
  • [49] Automated segmentation of articular disc of the temporomandibular joint on magnetic resonance images using deep learning
    Ito, Shota
    Mine, Yuichi
    Yoshimi, Yuki
    Takeda, Saori
    Tanaka, Akari
    Onishi, Azusa
    Peng, Tzu-Yu
    Nakamoto, Takashi
    Nagasaki, Toshikazu
    Kakimoto, Naoya
    Murayama, Takeshi
    Tanimoto, Kotaro
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [50] Fully automated segmentation of optic disk from retinal images using deep learning techniques
    Zabihollahy, F.
    Ukwatta, E.
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950