Automated segmentation of endometrial cancer on MR images using deep learning

被引:37
|
作者
Hodneland, Erlend [1 ,2 ,4 ]
Dybvik, Julie A. [2 ,3 ]
Wagner-Larsen, Kari S. [2 ,3 ]
Solteszova, Veronika [1 ,2 ]
Munthe-Kaas, Antonella Z. [2 ,4 ]
Fasmer, Kristine E. [2 ,3 ]
Krakstad, Camilla [5 ,6 ]
Lundervold, Arvid [2 ,7 ]
Lundervold, Alexander S. [2 ,8 ]
Salvesen, Oyvind [9 ]
Erickson, Bradley J. [10 ]
Haldorsen, Ingfrid [2 ,3 ]
机构
[1] NORCE Norwegian Res Ctr, Bergen, Norway
[2] Haukeland Hosp, MMIV Mohn Med Imaging & Visualizat Ctr, Dept Radiol, Bergen, Norway
[3] Univ Bergen, Dept Clin Med, Sect Radiol, Bergen, Norway
[4] Univ Bergen, Dept Math, Bergen, Norway
[5] Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen, Norway
[6] Haukeland Hosp, Dept Obstet & Gynecol, Bergen, Norway
[7] Univ Bergen, Dept Biomed, Bergen, Norway
[8] Western Norway Univ Appl Sci, Bergen, Norway
[9] Norwegian Univ Sci & Technol, Dept Publ Hlth & Gen Practice, Trondheim, Norway
[10] Mayo Clin, Dept Radiol, Rochester, MN USA
关键词
LESION;
D O I
10.1038/s41598-020-80068-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, p=0.06). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, p=0.08, p=0.60, and p=0.05). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Weakly supervised segmentation of uterus by scribble labeling on endometrial cancer MR images
    Ying, Jie
    Huang, Wei
    Fu, Le
    Yang, Haima
    Cheng, Jiangzihao
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167
  • [32] Automatic segmentation of prostate in MR images using deep learning and multi-atlas techniques
    Moradi, Hamid
    Foruzan, Amir Hossein
    Chen, Yen-Wei
    2018 25TH IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING AND 2018 3RD INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2018, : 199 - 202
  • [33] A DEEP LEARNING-BASED APPROACH FOR ACCURATE SEGMENTATION OF BLADDER WALL USING MR IMAGES
    Hammouda, K.
    Khalifa, F.
    Soliman, A.
    Ghazal, M.
    Abou El-Ghar, M.
    Haddad, A.
    Elmogy, M.
    Darwish, H. E.
    Keynton, R.
    El-Baz, A.
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST 2019), 2019,
  • [34] Automated segmentation of MR images of brain tumors
    Kaus, MR
    Warfield, SK
    Nabavi, A
    Black, PM
    Jolesz, FA
    Kikinis, R
    RADIOLOGY, 2001, 218 (02) : 586 - 591
  • [35] Automated segmentation of multispectral brain MR images
    Andersen, AH
    Zhang, ZM
    Avison, MJ
    Gash, DM
    JOURNAL OF NEUROSCIENCE METHODS, 2002, 122 (01) : 13 - 23
  • [36] SELECTION OF MR-IMAGES FOR AUTOMATED SEGMENTATION
    MCCLAIN, KJ
    ZHU, YQ
    HAZLE, JD
    JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1995, 5 (05): : 485 - 492
  • [37] AUTOMATED SEGMENTATION OF THE MENISCI FROM MR IMAGES
    Fripp, Jurgen
    Bourgeat, Pierrick
    Engstrom, Craig
    Ourselin, Sebastien
    Crozier, Stuart
    Salvado, Olivier
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 510 - 513
  • [38] Segmentation of Cytology Images to Detect Cervical Cancer Using Deep Learning Techniques
    Wubineh, Betelhem Zewdu
    Rusiecki, Andrzej
    Halawa, Krzysztof
    COMPUTATIONAL SCIENCE, ICCS 2024, PT IV, 2024, 14835 : 270 - 278
  • [39] Author Correction: Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    Stefano Trebeschi
    Joost J. M. van Griethuysen
    Doenja M. J. Lambregts
    Max J. Lahaye
    Chintan Parmar
    Frans C. H. Bakers
    Nicky H. G. M. Peters
    Regina G. H. Beets-Tan
    Hugo J. W. L. Aerts
    Scientific Reports, 8
  • [40] Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning
    Juenger, Stephanie T.
    Hoyer, Ulrike Cornelia Isabel
    Schaufler, Diana
    Laukamp, Kai Roman
    Goertz, Lukas
    Thiele, Frank
    Grunz, Jan-Peter
    Schlamann, Marc
    Perkuhn, Michael
    Kabbasch, Christoph
    Persigehl, Thorsten
    Grau, Stefan
    Borggrefe, Jan
    Scheffler, Matthias
    Shahzad, Rahil
    Pennig, Lenhard
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (05) : 1608 - 1622