Automated segmentation of endometrial cancer on MR images using deep learning

被引:37
|
作者
Hodneland, Erlend [1 ,2 ,4 ]
Dybvik, Julie A. [2 ,3 ]
Wagner-Larsen, Kari S. [2 ,3 ]
Solteszova, Veronika [1 ,2 ]
Munthe-Kaas, Antonella Z. [2 ,4 ]
Fasmer, Kristine E. [2 ,3 ]
Krakstad, Camilla [5 ,6 ]
Lundervold, Arvid [2 ,7 ]
Lundervold, Alexander S. [2 ,8 ]
Salvesen, Oyvind [9 ]
Erickson, Bradley J. [10 ]
Haldorsen, Ingfrid [2 ,3 ]
机构
[1] NORCE Norwegian Res Ctr, Bergen, Norway
[2] Haukeland Hosp, MMIV Mohn Med Imaging & Visualizat Ctr, Dept Radiol, Bergen, Norway
[3] Univ Bergen, Dept Clin Med, Sect Radiol, Bergen, Norway
[4] Univ Bergen, Dept Math, Bergen, Norway
[5] Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen, Norway
[6] Haukeland Hosp, Dept Obstet & Gynecol, Bergen, Norway
[7] Univ Bergen, Dept Biomed, Bergen, Norway
[8] Western Norway Univ Appl Sci, Bergen, Norway
[9] Norwegian Univ Sci & Technol, Dept Publ Hlth & Gen Practice, Trondheim, Norway
[10] Mayo Clin, Dept Radiol, Rochester, MN USA
关键词
LESION;
D O I
10.1038/s41598-020-80068-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, p=0.06). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, p=0.08, p=0.60, and p=0.05). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Automated Lung Cancer Segmentation Using a Dual-Modality Deep Learning Network with PET and CT Images
    Wang, S.
    Mahon, R. N.
    Weiss, E.
    Jan, N.
    Taylor, R. J.
    McDonagh, P. R. W., III
    Quinn, B. A.
    Yuan, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E557 - E558
  • [22] Transfer Learning Based Fully Automated Kidney Segmentation on MR Images
    Gaikar, Rohini
    Zabihollahy, Fatemeh
    Farrag, Nadia
    Elfaal, Mohamed W.
    Schieda, Nicola
    Ukwatta, Eranga
    MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2022, 12036
  • [23] Segmentation of Mammogram Images Using Deep Learning for Breast Cancer Detection
    Deb, Sagar Deep
    Jha, Rajib Kumar
    2022 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ROBOTICS (ICIPROB), 2022,
  • [24] Application of deep transfer learning for automated brain abnormality classification using MR images
    Talo, Muhammed
    Baloglu, Ulas Baran
    Yildirim, Ozal
    Acharya, U. Rajendra
    COGNITIVE SYSTEMS RESEARCH, 2019, 54 : 176 - 188
  • [25] Automatic Segmentation of the Prostate on MR Images based on Anatomy and Deep Learning
    Tao, Lei
    Ma, Ling
    Xie, Maoqiang
    Liu, Xiabi
    Tian, Zhiqiang
    Fei, Baowei
    MEDICAL IMAGING 2021: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11598
  • [26] Deep learning method for segmentation of rotator cuff muscles on MR images
    Medina, Giovanna
    Buckless, Colleen G.
    Thomasson, Eamon
    Oh, Luke S.
    Torriani, Martin
    SKELETAL RADIOLOGY, 2021, 50 (04) : 683 - 692
  • [27] Unsupervised Deep Learning for Hippocampus Segmentation in 7.0 Tesla MR Images
    Kim, Minjeong
    Wu, Guorong
    Shen, Dinggang
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2013), 2013, 8184 : 1 - 8
  • [28] Automatic Segmentation of the Spinal Canal in MR Images with Deep Learning Method
    Yumus, Mehmethan
    Apaydin, Merve
    Degirmenci, Ali
    Kesikburun, Serdar
    Karal, Omer
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [29] Deep learning-based segmentation of the placenta and uterus on MR images
    Shahedi, Maysam
    Spong, Catherine Y.
    Dormer, James D.
    Do, Quyen N.
    Xi, Yin
    Lewis, Matthew A.
    Herrera, Christina
    Madhuranthakam, Ananth J.
    Twickler, Diane M.
    Fei, Baowei
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (05)
  • [30] Deep learning method for segmentation of rotator cuff muscles on MR images
    Giovanna Medina
    Colleen G. Buckless
    Eamon Thomasson
    Luke S. Oh
    Martin Torriani
    Skeletal Radiology, 2021, 50 : 683 - 692