On the density-density critical indices in interacting Fermi systems

被引:34
作者
Benfatto, G [1 ]
Mastropietro, V [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
D O I
10.1007/s00220-002-0671-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The behaviour of correlation functions of d = 1 interacting fermionic systems is determined by a small number of critical indices. We prove that one of them is exactly zero. As a consequence, the behavior of the Fourier transform of the density-density correlation at zero momentum is qualitatively unaffected by the interaction, contrary to what happens at +/-2 (p) over tilde2(F), if (p) over tilde (F) is the Fermi momentum. The result is obtained by implementing Ward identities in a Renormalization Group approach.
引用
收藏
页码:97 / 134
页数:38
相关论文
共 23 条
[1]  
BAXTER RJ, 1984, EXACTLY SOLVABLE MOD, P258
[2]   Renormalization group, hidden symmetries and approximate ward identities in the XYZ model [J].
Benfatto, G ;
Mastropietro, V .
REVIEWS IN MATHEMATICAL PHYSICS, 2001, 13 (11) :1323-1435
[3]   PERTURBATION-THEORY OF THE FERMI-SURFACE IN A QUANTUM LIQUID - A GENERAL QUASI-PARTICLE FORMALISM AND ONE-DIMENSIONAL SYSTEMS [J].
BENFATTO, G ;
GALLAVOTTI, G .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (3-4) :541-664
[4]   RENORMALIZATION-GROUP AND THE FERMI-SURFACE IN THE LUTTINGER MODEL [J].
BENFATTO, G ;
GALLAVOTTI, G ;
MASTROPIETRO, V .
PHYSICAL REVIEW B, 1992, 45 (10) :5468-5480
[5]   BETA-FUNCTION AND SCHWINGER-FUNCTIONS FOR A MANY FERMIONS SYSTEM IN ONE-DIMENSION - ANOMALY OF THE FERMI-SURFACE [J].
BENFATTO, G ;
GALLAVOTTI, G ;
PROCACCI, A ;
SCOPPOLA, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (01) :93-171
[6]  
BENFATTO G, 2002, WARD IDENTITIES LOCA
[7]   BETA-FUNCTION AND ANOMALY OF THE FERMI-SURFACE FOR A D=1 SYSTEM OF INTERACTING FERMIONS IN A PERIODIC POTENTIAL [J].
BONETTO, F ;
MASTROPIETRO, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :57-93
[8]   ON THE CONSTRUCTION OF QUANTIZED GAUGE-FIELDS .3. THE TWO-DIMENSIONAL ABELIAN HIGGS-MODEL WITHOUT CUTOFFS [J].
BRYDGES, DC ;
FROHLICH, J ;
SEILER, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (03) :353-399
[9]  
DZYALOSHINSKY IE, 1974, ZH EKSP TEOR FIZ, V38, P202
[10]   APPLICATION OF CONVENTIONAL EQUATION OF MOTION METHODS TO TOMONAGA MODEL [J].
EVERTS, HU ;
SCHULZ, H .
SOLID STATE COMMUNICATIONS, 1974, 15 (08) :1413-1416