A synchronous defect passivation strategy for constructing high-performance and stable planar perovskite solar cells

被引:54
作者
Sun, Yansen [1 ,2 ]
Pang, Zhenyu [1 ,2 ]
Quan, Yingnan [3 ]
Han, Donglai [4 ]
Zhang, Xinyuan [1 ,2 ]
Ge, Xin [3 ]
Wang, Fengyou [3 ]
Sun, Yunfei [3 ]
Yang, Jinghai [3 ]
Yang, Lili [3 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Jilin Normal Univ, Minist Educ, Key Lab Funct Mat Phys & Chem, Changchun 130103, Peoples R China
[4] Changchun Univ Sci & Technol, Sch Mat Sci & Engn, Changchun 130022, Peoples R China
关键词
Perovskite solar cells; Defect passivation; Alkali metal ions; Power conversion efficiency; LEAD IODIDE; EFFICIENT; HYSTERESIS; THIN; MIGRATION; IMPACT; LAYER; FILMS; OXIDE; SNO2;
D O I
10.1016/j.cej.2020.127387
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The diverse defects within perovskite film, electron transport layer (ETL) and their interface greatly impair the power conversion efficiency (PCE), hysteresis and stability of perovskite solar cells (PSCs). Herein, we propose a synchronous defect passivation strategy by introducing chelating agent containing movable alkali metal cations, i.e. sodium tartrate (STA)/potassium sodium tartrate (PSTA) into SnO2 aqueous colloidal dispersions to realize the efficient regulation of ETL, perovskite layer and their interface properties. That is, the chelating function and existence of alkali metal ions in additives lead to uniform, less defective and highly conductive SnO2 ETLs, which provides outstanding platforms for depositing perovskite films with high-quality crystallinity to improve the interfacial charge transfer. In particular, a part of Na+ and K+ ions of additives can enter into perovskite film through thermal diffusion and passivate the defects by coordinating with under-coordinated halides via ionic interactions or electrostatic adsorption on the negative charged defects at surface and grain boundaries. Such synchronous optimization for ETLs, perovskite and their interface enables the realization of high PCEs of 20.38% and 21.14% with reduced hysteresis and improved stability for STA-SnO2 and PSTA-SnO2 based PSCs, respectively. This work greatly simplifies the defect passivation process and provides a promising low-cost technique for large-scale manufacturing efficient and stable planar PSCs.
引用
收藏
页数:10
相关论文
共 65 条
[31]   Unravelling the mechanism of interface passivation engineering for achieving high-efficient ZnO-based planar perovskite solar cells [J].
Pang, Zhenyu ;
Sun, Yansen ;
Gao, Yanbo ;
Zhang, Xinyuan ;
Sun, Yunfei ;
Yang, Jinghai ;
Wang, Fengyou ;
Yang, Lili .
JOURNAL OF POWER SOURCES, 2019, 438
[32]   Perovskite Solar Cells Based on Low-Temperature Processed Indium Oxide Electron Selective Layers [J].
Qin, Minchao ;
Ma, Junjie ;
Ke, Weijun ;
Qin, Pingli ;
Lei, Hongwei ;
Tao, Hong ;
Zheng, Xiaolu ;
Xiong, Liangbin ;
Liu, Qin ;
Chen, Zhiliang ;
Lu, Junzheng ;
Yang, Guang ;
Fang, Guojia .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (13) :8460-8466
[33]   Stable and Efficient Organo-Metal Halide Hybrid Perovskite Solar Cells via π-Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction [J].
Qin, Ping-Li ;
Yang, Guang ;
Ren, Zhi-wei ;
Cheung, Sin Hang ;
So, Shu Kong ;
Chen, Li ;
Hao, Jianhua ;
Hou, Jianhui ;
Li, Gang .
ADVANCED MATERIALS, 2018, 30 (12)
[34]   High-Performance Rigid and Flexible Perovskite Solar Cells with Low-Temperature Solution-Processable Binary Metal Oxide Hole-Transporting Materials [J].
Qin, Ping-Li ;
He, Qin ;
Chen, Cong ;
Zheng, Xiao-Lu ;
Yang, Guang ;
Tao, Hong ;
Xiong, Liang-Bin ;
Xiong, Lun ;
Li, Gang ;
Fang, Guo-Jia .
SOLAR RRL, 2017, 1 (08)
[35]   Copper-Doped Chromium Oxide Hole-Transporting Layer for Perovskite Solar Cells: Interface Engineering and Performance Improvement [J].
Qin, Ping-Li ;
Lei, Hong-Wei ;
Zheng, Xiao-Lu ;
Liu, Qin ;
Tao, Hong ;
Yang, Guang ;
Ke, Wei-Jun ;
Xiong, Liang-Bin ;
Qin, Ming-Chao ;
Zhao, Xing-Zhong ;
Fang, Guo-Jia .
ADVANCED MATERIALS INTERFACES, 2016, 3 (14)
[36]   Vitrification Transformation of Poly(Ethylene Oxide) Activating Interface Passivation for High-Efficiency Perovskite Solar Cells [J].
Qin, Pingli ;
Wu, Tong ;
Wang, Zhengchun ;
Zheng, Xiaolu ;
Yu, Xueli ;
Fang, Guojia ;
Li, Gang .
SOLAR RRL, 2019, 3 (10)
[37]   In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar [J].
Qin, Pingli ;
Fang, Guojia ;
Ke, Weijun ;
Cheng, Fei ;
Zheng, Qiao ;
Wan, Jiawei ;
Lei, Hongwei ;
Zhao, Xingzhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (08) :2742-2756
[38]   Novel p-dopant toward highly efficient and stable perovskite solar cells [J].
Seo, Ji-Youn ;
Kim, Hui-Seon ;
Akin, Seckin ;
Stojanovic, Marko ;
Simon, Elfriede ;
Fleischer, Maximilian ;
Hagfeldt, Anders ;
Zakeeruddin, Shaik M. ;
Graetzel, Michael .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) :2985-2992
[39]   Boosting the Efficiency of Perovskite Solar Cells with CsBr-Modified Mesoporous TiO2 Beads as Electron-Selective Contact [J].
Seo, Ji-Youn ;
Uchida, Ryusuke ;
Kim, Hui-Seon ;
Saygili, Yasemin ;
Luo, Jingshan ;
Moore, Chris ;
Kerrod, Julie ;
Wagstaff, Anthony ;
Eklund, Mike ;
McIntyre, Robert ;
Pellet, Norman ;
Zakeeruddin, Shaik M. ;
Hagfeldt, Anders ;
Gratzel, Michael .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (15)
[40]   Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells [J].
Shao, Yuchuan ;
Xiao, Zhengguo ;
Bi, Cheng ;
Yuan, Yongbo ;
Huang, Jinsong .
NATURE COMMUNICATIONS, 2014, 5