Raman Spectroscopic Investigation of Sulfates Using Mosaic Grating Spatial Heterodyne Raman Spectrometer

被引:27
作者
Qiu, Jun [1 ,2 ]
Li, Xiaotian [1 ]
Qi, Xiangdong [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2019年 / 11卷 / 05期
基金
中国国家自然科学基金;
关键词
Spectroscopy; spatial heterodyne spectrometer; broadband; high-resolution; field widening;
D O I
10.1109/JPHOT.2019.2939222
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a field-widened spatial heterodyne Raman spectrometer with a mosaic grating structure to investigate the broadband Raman spectra of sulfates. The broadband static spatial heterodyne Raman spectrometer configuration employs two mosaic gratings instead of the diffraction gratings to divide the broadband Raman spectrum into two bands. It is able to record high-resolution, broadband Raman spectrum range, covering 5740 cm(-1) with 3.061 cm(-1) spectral resolution using a regular CCD in a single-shot measurement. Raman spectra of mineral sulfates (celestine, gypsum) are investigated. This is the first time to conduct this Raman spectroscopic experiments to investigate the sulfates using the spatial heterodyne Raman spectroscopy. The sodium, potassium and ammonium sulfates at solid state and in aqueous solutions had been detected and analyzed. The effects of metal ions (K+, Na+, NH4+, Ca2+, Sr2+) on vibration of sulfate anion SO42- were discussed. The main v(1) mode can be probed by the spatial heterodyne Raman spectroscopy to determine the concentration of sulfate and unambiguous identification of different sulfate minerals, solid sulfates.
引用
收藏
页数:12
相关论文
共 24 条
[1]   Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions [J].
Ben Mabrouk, Kawther ;
Kauffmann, Thomas H. ;
Aroui, Hassen ;
Fontana, Marc D. .
JOURNAL OF RAMAN SPECTROSCOPY, 2013, 44 (11) :1603-1608
[2]  
Bishop JL., 2005, International Journal of Astrobiology, V3, P275, DOI [DOI 10.1017/S1473550405002259, 10.1017/S1473550405002259]
[3]   In Situ Raman Spectroscopic Study of Gypsum (CaSO4•2H2O) and Epsomite (MgSO4•7H2O) Dehydration Utilizing an Ultrasonic Levitator [J].
Brotton, Stephen J. ;
Kaiser, Ralf I. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (04) :669-673
[4]  
Buzgar N., 2009, GEOLOGIE, V55, P5
[5]   Raman spectroscopy and X-ray diffraction studies on celestite [J].
Chen, Yen-Hua ;
Yu, Shu-Cheng ;
Huang, Eugene ;
Lee, Pei-Lun .
PHYSICA B-CONDENSED MATTER, 2010, 405 (20) :4386-4388
[6]   RAMAN-SPECTRUM OF NA2SO4 (PHASE-V) [J].
CHOI, BK ;
LOCKWOOD, DJ .
SOLID STATE COMMUNICATIONS, 1989, 72 (01) :133-137
[7]   PRECISION RAMAN INVESTIGATION OF THE NU-1 MODE OF VIBRATION OF SO42-, WO42- AND MOO42- IN AQUEOUS-SOLUTIONS OF DIFFERENT CONCENTRATIONS [J].
DEAN, KJ ;
WILKINSON, GR .
JOURNAL OF RAMAN SPECTROSCOPY, 1983, 14 (02) :130-134
[8]   Flatfielding in spatial heterodyne spectroscopy [J].
Englert, Christoph R. ;
Harlander, John M. .
APPLIED OPTICS, 2006, 45 (19) :4583-4590
[9]   Correction of phase distortion in spatial heterodyne spectroscopy [J].
Englert, CR ;
Harlander, JM ;
Cardon, JG ;
Roesler, FL .
APPLIED OPTICS, 2004, 43 (36) :6680-6687
[10]  
Fontana MD, 2013, SPEC PER REP SPECTRO, V44, P40, DOI 10.1039/9781849737791-00040