A new integrable equation with peakon solutions

被引:682
作者
Degasperis, A [1 ]
Holm, DD
Hone, ANW
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, Sez Roma, Ist Nazl Fis Nucl, Rome, Italy
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Univ Kent, Inst Math & Stat, Canterbury, Kent, England
关键词
peakons; reciprocal transformations; weak solutions;
D O I
10.1023/A:1021186408422
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a new partial differential equation recently obtained by Degasperis and Procesi using the method of asymptotic integrability; this equation has a form similar to the Camassa-Holm shallow water wave equation. We prove the exact integrability of the new equation by constructing its Lax pair and explain its relation to a negative flow in the Kaup-Kupershmidt hierarchy via a reciprocal transformation. The infinite sequence of conserved quantities is derived together with a proposed bi-Hamiltonian structure, The equation admits exact solutions as a superposition of multipeakons, and we describe the integrable finite-dimensional peakon dynamics and compare it with the analogous results for Camassa-Holm peakons.
引用
收藏
页码:1463 / 1474
页数:12
相关论文
共 21 条
[1]  
[Anonymous], 1993, DIRAC STRUCTURES INT
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[4]  
DEGASPERIS A, UNPUB CLASS EQUATION
[5]  
Degasperis D., 1999, SYMMETRY PERTURBATIO, P23
[6]  
DODD RK, 1977, P ROY SOC LOND A MAT, V352, P481, DOI 10.1098/rspa.1977.0012
[7]  
DULLIN H, 2001, PHYS REV LETT, V87, P1945
[8]   Integrable vs. nonintegrable geodesic soliton behavior [J].
Fringer, OB ;
Holm, DD .
PHYSICA D, 2001, 150 (3-4) :237-263
[9]   Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation [J].
Fuchssteiner, B .
PHYSICA D, 1996, 95 (3-4) :229-243
[10]   FACTORIZATION AND PAINLEVE ANALYSIS OF A CLASS OF NONLINEAR 3RD-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
GILSON, C ;
PICKERING, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (10) :2871-2888